vfxAlert - Binary options signals

Binary Options Providers - Binary Options Trading Strategy

Binary Options Providers, provide you information about binary options trading strategies, what are binary options, binary option signals, binary options review, binary options platform, binary options trading system, free binary options signals, binary options demo account, and how to trade binary options.
[link]

03-27 13:34 - 'AiOption (AiOption) receives tens of millions of dollars in financing to help the blockchain empower the financial industry' (self.Bitcoin) by /u/jackzhang0 removed from /r/Bitcoin within 3-13min

'''
In 2020, due to the dual impact of the coronary pneumonia epidemic and the plunge of US oil stocks, the economic situation in the Asia-Pacific region is very grim. Within a week, U.S. stocks melted twice, and crypto digital assets such as Bitcoin plummeted. This seems to indicate that the direction of global financial markets in 2020 will be extremely unstable. In this situation, traditional financial investment methods are not the most valuable means of financial management. AiOption Blockchain Binary Options Platform provides a new direction for financial investment, predicting the rise and fall of encrypted digital assets such as Bitcoin in a fixed period of time to obtain income.
Recently, AiOption, a professional blockchain binary options platform, announced that it has received tens of millions of dollars in financing. This round of financing was led by the Japanese consortium and the Thai royal family. This round of financing is an important milestone in the continuous increase of market competitiveness. At the same time, AiOption has become the largest platform in China to provide blockchain binary options transactions.

[link]1
This round of financing will help the platform to further strengthen the innovation and research and development of original key core technologies, consolidate the company's leading edge in the binary options industry of the blockchain, and help the company continue to expand more application scenarios and accelerate the blockchain's empowerment of the financial industry. In order to further improve the product experience, we will also introduce local special versions based on user habits in different countries and regions. As soon as it entered the promotion in the Asia-Pacific region in 2020, there were more than 100,000 registered users in the first week, achieving very good results. The platform will also launch more promotion activities in combination with local characteristics. The top investment groups such as the Thai Royal Family and the Japanese Consortium gave AiOption a high rating. It is indeed a black technology star product known as Israeli fintech innovation.
AiOption (AiOption) is a professional crypto asset options trading platform with a solid foundation of blockchain technology. It has achieved significant R & D results in distributed network and blockchain security. It has worked closely with more than 8 countries to provide a very simple way to predict the price fluctuations of encrypted digital assets such as Bitcoin and Ethereum. The platform collects price data of multiple trading symbols from multiple selected trusted data sources (such as Binance, coinbase, bittrex, huobi, and some other well-known global exchanges) to merge together, and uses intelligent algorithms to identify and Filter abnormal price data and calculate the final price index for a single coin. Use more innovative and fair ways for players to predict the price of crypto digital assets such as Bitcoin and Ethereum.

[link]2
Safe, efficient, and high-performance systems
AiOption has top risk control, anti-fraud and segregated witness technologies, comprehensively formulates a security policy system, multi-level risk identification control, and multiple security defense methods. The high-frequency transaction matching engine steadily supports large amounts of data, high performance, and high concurrency. It adopts a distributed architecture, and the market and deep data come online at a fast speed. The front-end adopts a firewall anti-attack mechanism and the back-end adopts a hidden and discrete deployment.
AiOption's binary options trading system is equipped with flexible and convenient trading modes and an extremely secure system to ensure the safety of user assets.
Fair and simple, simple and convenient transaction model
On a general options platform, the bet price is real-time Bitcoin price and can be easily manipulated by the platform. When the player wagers the Bitcoin price on the platform, the wager price is the initial Bitcoin price for each round of the game, and manipulation is not allowed! Ensure fair and fair transactions, convenient user transactions, and easy to master gameplay.
  1. The operation is simple. You only need to judge the rise and fall of encrypted digital assets after 90 seconds.
  2. The rate of return is fast, and the single-round profit can be settled in 90 seconds.
  3. Transaction time is unlimited, 90 seconds matching, non-stop trading 7 days and 24 hours.
  4. There is no handling fee, and no dealer control disk.
At the same time, the platform has a unique function of depositing money and managing money. By depositing a certain amount of USDT, excellent players and excellent teams can obtain fixed high returns, with a maximum return of four times!
For many years, AIoption has always adhered to the concept of blockchain technology to empower the financial industry, and has concentrated on polishing products and application scenarios. The top-level blockchain team has achieved certain results in the blockchain and financial fields.
Through this financing, we will continue to focus on the development of blockchain technology and continue to develop in the large field of blockchain binary options services. AiOption's vision is to promote the development of blockchain binary options services, provide customers with better services, and continue to maintain its leading position in the domestic blockchain binary options industry.
'''
AiOption (AiOption) receives tens of millions of dollars in financing to help the blockchain empower the financial industry
Go1dfish undelete link
unreddit undelete link
Author: jackzhang0
1: pr*vi*w.redd.i*/0*i**tuut7p41.png*w***h=6*8&*mp;for*at*png&****=web*&*s*9387b*0a4b5b1*b8*165*517*9*5*bdb*a5e1a*b 2: preview.redd.it*vgy*zpd4u*p41*pn***i**h=769&format=pn*&am*;***o=w*bp&***;s=b69***7339239*967622***bccea*c5*07b*55**
Unknown links are censored to prevent spreading illicit content.
submitted by removalbot to removalbot [link] [comments]

BeliCEX aims to minimize the conventional boundaries and provide its users with a comprehensive platform for trading various kinds of digital assets across multiple trading ways, including binary options.

submitted by MyOyin to altcoin_news [link] [comments]

Why Betex? Betex makes it possible for traders to be placing bets against each other instead of platform providers or other intermediaries as is the case with many binary options platforms.

By choosing Blockchain technology instead of traditional platforms, Betex can now provide access to real-time data, thereby, ensuring absolute transparency of its system. So there is no doubt that all users are treated equally and fairly.
submitted by Betex_lab to ethinvestor [link] [comments]

Best Mobile App for binary options that provide an exact trading platform.

Best Mobile App for binary options that provide an exact trading platform. submitted by binaryoptionstech to Trading [link] [comments]

The Next Processor Change is Within ARMs Reach

As you may have seen, I sent the following Tweet: “The Apple ARM MacBook future is coming, maybe sooner than people expect” https://twitter.com/choco_bit/status/1266200305009676289?s=20
Today, I would like to further elaborate on that.
tl;dr Apple will be moving to Arm based macs in what I believe are 4 stages, starting around 2015 and ending around 2023-2025: Release of T1 chip Macbooks, release of T2 chip Macbooks, Release of at least one lower end model Arm Macbook, and transitioning full lineup to Arm. Reasons for each are below.
Apple is very likely going to switch to switch their CPU platform to their in-house silicon designs with an ARM architecture. This understanding is a fairly common amongst various Apple insiders. Here is my personal take on how this switch will happen and be presented to the consumer.
The first question would likely be “Why would Apple do this again?”. Throughout their history, Apple has already made two other storied CPU architecture switches - first from the Motorola 68k to PowerPC in the early 90s, then from PowerPC to Intel in the mid 2000s. Why make yet another? Here are the leading reasons:
A common refrain heard on the Internet is the suggestion that Apple should switch to using CPUs made by AMD, and while this has been considered internally, it will most likely not be chosen as the path forward, even for their megalithic giants like the Mac Pro. Even though AMD would mitigate Intel’s current set of problems, it does nothing to help the issue of the x86_64 architecture’s problems and inefficiencies, on top of jumping to a platform that doesn’t have a decade of proven support behind it. Why spend a lot of effort re-designing and re- optimizing for AMD’s platform when you can just put that effort into your own, and continue the vertical integration Apple is well-known for?
I believe that the internal development for the ARM transition started around 2015/2016 and is considered to be happening in 4 distinct stages. These are not all information from Apple insiders; some of these these are my own interpretation based off of information gathered from supply-chain sources, examination of MacBook schematics, and other indicators from Apple.

Stage1 (from 2014/2015 to 2017):

The rollout of computers with Apple’s T1 chip as a coprocessor. This chip is very similar to Apple’s T8002 chip design, which was used for the Apple Watch Series 1 and Series 2. The T1 is primarily present on the first TouchID enabled Macs, 2016 and 2017 model year MacBook Pros.
Considering the amount of time required to design and validate a processor, this stage most likely started around 2014 or 2015, with early experimentation to see whether an entirely new chip design would be required, or if would be sufficient to repurpose something in the existing lineup. As we can see, the general purpose ARM processors aren’t a one- trick pony.
To get a sense of the decision making at the time, let’s look back a bit. The year is 2016, and we're witnessing the beginning of stagnation of Intel processor lineup. There is not a lot to look forward to other than another “+” being added to the 14nm fabrication process. The MacBook Pro has used the same design for many years now, and its age is starting to show. Moving to AMD is still very questionable, as they’ve historically not been able to match Intel’s performance or functionality, especially at the high end, and since the “Ryzen” lineup is still unreleased, there is absolutely no benchmarks or other data to show they are worth consideration, and AMD’s most recent line of “Bulldozer” processors were very poorly received. Now is probably as good a time as any to begin experimenting with the in-house ARM designs, but it’s not time to dive into the deep end yet, our chips are not nearly mature enough to compete, and it’s not yet certain how long Intel will be stuck in the mud. As well, it is widely understood that Apple and Intel have an exclusivity contract in exchange for advantageous pricing. Any transition would take considerable time and effort, and since there are no current viable alternative to Intel, the in-house chips will need to advance further, and breaching a contract with Intel is too great a risk. So it makes sense to start with small deployments, to extend the timeline, stretch out to the end of the contract, and eventually release a real banger of a Mac.
Thus, the 2016 Touch Bar MacBooks were born, alongside the T1 chip mentioned earlier. There are good reasons for abandoning the piece of hardware previously used for a similar purpose, the SMC or System Management Controller. I suspect that the biggest reason was to allow early analysis of the challenges that would be faced migrating Mac built- in peripherals and IO to an ARM-based controller, as well as exploring the manufacturing, power, and performance results of using the chips across a broad deployment, and analyzing any early failure data, then using this to patch any issues, enhance processes, and inform future designs looking towards the 2nd stage.
The former SMC duties now moved to T1 includes things like
The T1 chip also communicates with a number of other controllers to manage a MacBook’s behavior. Even though it’s not a very powerful CPU by modern standards, it’s already responsible for a large chunk of the machine’s operation. Moving control of these peripherals to the T1 chip also brought about the creation of the fabled BridgeOS software, a shrunken-down watchOS-based system that operates fully independently of macOS and the primary Intel processor.
BridgeOS is the first step for Apple’s engineering teams to begin migrating underlying systems and services to integrate with the ARM processor via BridgeOS, and it allowed internal teams to more easily and safely develop and issue firmware updates. Since BridgeOS is based on a standard and now well-known system, it means that they can leverage existing engineering expertise to flesh out the T1’s development, rather than relying on the more arcane and specialized SMC system, which operates completely differently and requires highly specific knowledge to work with. It also allows reuse of the same fabrication pipeline used for Apple Watch processors, and eliminated the need to have yet another IC design for the SMC, coming from a separate source, to save a bit on cost.
Also during this time, on the software side, “Project Marzipan”, today Catalyst, came into existence. We'll get to this shortly.
For the most part, this Stage 1 went without any major issues. There were a few firmware problems at first during the product launch, but they were quickly solved with software updates. Now that engineering teams have had experience building for, manufacturing, and shipping the T1 systems, Stage 2 would begin.

Stage2 (2018-Present):

Stage 2 encompasses the rollout of Macs with the T2 coprocessor, replacing the T1. This includes a much wider lineup, including MacBook Pro with Touch Bar, starting with 2018 models, MacBook Air starting with 2018 models, the iMac Pro, the 2019 Mac Pro, as well as Mac Mini starting in 2018.
With this iteration, the more powerful T8012 processor design was used, which is a further revision of the T8010 design that powers the A10 series processors used in the iPhone 7. This change provided a significant increase in computational ability and brought about the integration of even more devices into T2. In addition to the T1’s existing responsibilities, T2 now controls:
Those last 2 points are crucial for Stage 2. Under this new paradigm, the vast majority of the Mac is now under the control of an in-house ARM processor. Stage 2 also brings iPhone-grade hardware security to the Mac. These T2 models also incorporated a supported DFU (Device Firmware Update, more commonly “recovery mode”), which acts similarly to the iPhone DFU mode and allows restoration of the BridgeOS firmware in the event of corruption (most commonly due to user-triggered power interruption during flashing).
Putting more responsibility onto the T2 again allows for Apple’s engineering teams to do more early failure analysis on hardware and software, monitor stability of these machines, experiment further with large-scale production and deployment of this ARM platform, as well as continue to enhance the silicon for Stage 3.
A few new user-visible features were added as well in this stage, such as support for the passive “Hey Siri” trigger, and offloading image and video transcoding to the T2 chip, which frees up the main Intel processor for other applications. BridgeOS was bumped to 2.0 to support all of these changes and the new chip.
On the macOS software side, what was internally known as Project Marzipan was first demonstrated to the public. Though it was originally discovered around 2017, and most likely began development and testing within later parts of Stage 1, its effects could be seen in 2018 with the release of iPhone apps, now running on the Mac using the iOS SDKs: Voice Recorder, Apple News, Home, Stocks, and more, with an official announcement and public release at WWDC in 2019. Catalyst would come to be the name of Marzipan used publicly. This SDK release allows app developers to easily port iOS apps to run on macOS, with minimal or no code changes, and without needing to develop separate versions for each. The end goal is to allow developers to submit a single version of an app, and allow it to work seamlessly on all Apple platforms, from Watch to Mac. At present, iOS and iPadOS apps are compiled for the full gamut of ARM instruction sets used on those devices, while macOS apps are compiled for x86_64. The logical next step is to cross this bridge, and unify the instruction sets.
With this T2 release, the new products using it have not been quite as well received as with the T1. Many users have noticed how this change contributes further towards machines with limited to no repair options outside of Apple’s repair organization, as well as some general issues with bugs in the T2.
Products with the T2 also no longer have the “Lifeboat” connector, which was previously present on 2016 and 2017 model Touch Bar MacBook Pro. This connector allowed a certified technician to plug in a device called a CDM Tool (Customer Data Migration Tool) to recover data off of a machine that was not functional. The removal of this connector limits the options for data recovery in the event of a problem, and Apple has never offered any data recovery service, meaning that a irreparable failure of the T2 chip or the primary board would result in complete data loss, in part due to the strong encryption provided by the T2 chip (even if the data got off, the encryption keys were lost with the T2 chip). The T2 also brought about the linkage of component serial numbers of certain internal components, such as the solid state storage, display, and trackpad, among other components. In fact, many other controllers on the logic board are now also paired to the T2, such as the WiFi and Bluetooth controller, the PMIC (Power Management Controller), and several other components. This is the exact same system used on newer iPhone models and is quite familiar to technicians who repair iPhone logic boards. While these changes are fantastic for device security and corporate and enterprise users, allowing for a very high degree of assurance that devices will refuse to boot if tampered with in any way - even from storied supply chain attacks, or other malfeasance that can be done with physical access to a machine - it has created difficulty with consumers who more often lack the expertise or awareness to keep critical data backed up, as well as the funds to perform the necessary repairs from authorized repair providers. Other issues reported that are suspected to be related to T2 are audio “cracking” or distortion on the internal speakers, and the BridgeOS becoming corrupt following a firmware update resulting in a machine that can’t boot.
I believe these hiccups will be properly addressed once macOS is fully integrated with the ARM platform. This stage of the Mac is more like a chimera of an iPhone and an Intel based computer. Technically, it does have all of the parts of an iPhone present within it, cellular radio aside, and I suspect this fusion is why these issues exist.
Recently, security researchers discovered an underlying security problem present within the Boot ROM code of the T1 and T2 chip. Due to being the same fundamental platform as earlier Apple Watch and iPhone processors, they are vulnerable to the “checkm8” exploit (CVE-2019-8900). Because of how these chips operate in a Mac, firmware modifications caused by use of the exploit will persist through OS reinstallation and machine restarts. Both the T1 and T2 chips are always on and running, though potentially in a heavily reduced power usage state, meaning the only way to clean an exploited machine is to reflash the chip, triggering a restart, or to fully exhaust or physically disconnect the battery to flush its memory. Fortunately, this exploit cannot be done remotely and requires physical access to the Mac for an extended duration, as well as a second Mac to perform the change, so the majority of users are relatively safe. As well, with a very limited execution environment and access to the primary system only through a “mailbox” protocol, the utility of exploiting these chips is extremely limited. At present, there is no known malware that has used this exploit. The proper fix will come with the next hardware revision, and is considered a low priority due to the lack of practical usage of running malicious code on the coprocessor.
At the time of writing, all current Apple computers have a T2 chip present, with the exception of the 2019 iMac lineup. This will change very soon with the expected release of the 2020 iMac lineup at WWDC, which will incorporate a T2 coprocessor as well.
Note: from here on, this turns entirely into speculation based on info gathered from a variety of disparate sources.
Right now, we are in the final steps of Stage 2. There are strong signs that an a MacBook (12”) with an ARM main processor will be announced this year at WWDC (“One more thing...”), at a Fall 2020 event, Q1 2021 event, or WWDC 2021. Based on the lack of a more concrete answer, WWDC2020 will likely not see it, but I am open to being wrong here.

Stage3 (Present/2021 - 2022/2023):

Stage 3 involves the first version of at least one fully ARM-powered Mac into Apple’s computer lineup.
I expect this will come in the form of the previously-retired 12” MacBook. There are rumors that Apple is still working internally to perfect the infamous Butterfly keyboard, and there are also signs that Apple is developing an A14x based processors with 8-12 cores designed specifically for use as the primary processor in a Mac. It makes sense that this model could see the return of the Butterfly keyboard, considering how thin and light it is intended to be, and using an A14x processor would make it will be a very capable, very portable machine, and should give customers a good taste of what is to come.
Personally, I am excited to test the new 12" “ARMbook”. I do miss my own original 12", even with all the CPU failure issues those older models had. It was a lovely form factor for me.
It's still not entirely known whether the physical design of these will change from the retired version, exactly how many cores it will have, the port configuration, etc. I have also heard rumors about the 12” model possibly supporting 5G cellular connectivity natively thanks to the A14 series processor. All of this will most likely be confirmed soon enough.
This 12” model will be the perfect stepping stone for stage 3, since Apple’s ARM processors are not yet a full-on replacement for Intel’s full processor lineup, especially at the high end, in products such as the upcoming 2020 iMac, iMac Pro, 16” MacBook Pro, and the 2019 Mac Pro.
Performance of Apple’s ARM platform compared to Intel has been a big point of contention over the last couple years, primarily due to the lack of data representative of real-world desktop usage scenarios. The iPad Pro and other models with Apple’s highest-end silicon still lack the ability to execute a lot of high end professional applications, so data about anything more than video editing and photo editing tasks benchmarks quickly becomes meaningless. While there are completely synthetic benchmarks like Geekbench, Antutu, and others, to try and bridge the gap, they are very far from being accurate or representative of the real real world performance in many instances. Even though the Apple ARM processors are incredibly powerful, and I do give constant praise to their silicon design teams, there still just isn’t enough data to show how they will perform for real-world desktop usage scenarios, and synthetic benchmarks are like standardized testing: they only show how good a platform is at running the synthetic benchmark. This type of benchmark stresses only very specific parts of each chip at a time, rather than how well it does a general task, and then boil down the complexity and nuances of each chip into a single numeric score, which is not a remotely accurate way of representing processors with vastly different capabilities and designs. It would be like gauging how well a person performs a manual labor task based on averaging only the speed of every individual muscle in the body, regardless of if, or how much, each is used. A specific group of muscles being stronger or weaker than others could wildly skew the final result, and grossly misrepresent performance of the person as a whole. Real world program performance will be the key in determining the success and future of this transition, and it will have to be great on this 12" model, but not just in a limited set of tasks, it will have to be great at *everything*. It is intended to be the first Horseman of the Apocalypse for the Intel Mac, and it better behave like one. Consumers have been expecting this, especially after 15 years of Intel processors, the continued advancement of Apple’s processors, and the decline of Intel’s market lead.
The point of this “demonstration” model is to ease both users and developers into the desktop ARM ecosystem slowly. Much like how the iPhone X paved the way for FaceID-enabled iPhones, this 12" model will pave the way towards ARM Mac systems. Some power-user type consumers may complain at first, depending on the software compatibility story, then realize it works just fine since the majority of the computer users today do not do many tasks that can’t be accomplished on an iPad or lower end computer. Apple needs to gain the public’s trust for basic tasks first, before they will be able to break into the market of users performing more hardcore or “Pro” tasks. This early model will probably not be targeted at these high-end professionals, which will allow Apple to begin to gather early information about the stability and performance of this model, day to day usability, developmental issues that need to be addressed, hardware failure analysis, etc. All of this information is crucial to Stage 4, or possibly later parts of Stage 3.
The 2 biggest concerns most people have with the architecture change is app support and Bootcamp.
Any apps released through the Mac App Store will not be a problem. Because App Store apps are submitted as LLVM IR (“Bitcode”), the system can automatically download versions compiled and optimized for ARM platforms, similar to how App Thinning on iOS works. For apps distributed outside the App Store, thing might be more tricky. There are a few ways this could go:
As for Bootcamp, while ARM-compatible versions of Windows do exist and are in development, they come with their own similar set of app support problems. Microsoft has experimented with emulating x86_64 on their ARM-based Surface products, and some other OEMs have created their own Windows-powered ARM laptops, but with very little success. Performance is a problem across the board, with other ARM silicon not being anywhere near as advanced, and with the majority of apps in the Windows ecosystem that were not developed in-house at Microsoft running terribly due to the x86_64 emulation software. If Bootcamp does come to the early ARM MacBook, it more than likely will run like very poorly for anything other than Windows UWP apps. There is a high chance it will be abandoned entirely until Windows becomes much more friendly to the architecture.
I believe this will also be a very crucial turning point for the MacBook lineup as a whole. At present, the iPad Pro paired with the Magic Keyboard is, in many ways, nearly identical to a laptop, with the biggest difference being the system software itself. While Apple executives have outright denied plans of merging the iPad and MacBook line, that could very well just be a marketing stance, shutting the down rumors in anticipation of a well-executed surprise. I think that Apple might at least re-examine the possibility of merging Macs and iPads in some capacity, but whether they proceed or not could be driven by consumer reaction to both products. Do they prefer the feel and usability of macOS on ARM, and like the separation of both products? Is there success across the industry of the ARM platform, both at the lower and higher end of the market? Do users see that iPadOS and macOS are just 2 halves of the same coin? Should there be a middle ground, and a new type of product similar to the Surface Book, but running macOS? Should Macs and iPads run a completely uniform OS? Will iPadOS ever see exposed the same sort of UNIX-based tools for IT administrators and software developers that macOS has present? These are all very real questions that will pop up in the near future.
The line between Stage 3 and Stage 4 will be blurry, and will depend on how Apple wishes to address different problems going forward, and what the reactions look like. It is very possible that only 12” will be released at first, or a handful more lower end model laptop and desktop products could be released, with high performance Macs following in Stage 4, or perhaps everything but enterprise products like Mac Pro will be switched fully. Only time will tell.

Stage 4 (the end goal):

Congratulations, you’re made it to the end of my TED talk. We are now well into the 2020s and COVID-19 Part 4 is casually catching up to the 5G = Virus crowd. All Macs have transitioned fully to ARM. iMac, MacBooks Pro and otherwise, Mac Pro, Mac Mini, everything. The future is fully Apple from top to bottom, and vertical integration leading to market dominance continues. Many other OEM have begun to follow in this path to some extent, creating more demand for a similar class of silicon from other firms.
The remainder here is pure speculation with a dash of wishful thinking. There are still a lot of things that are entirely unclear. The only concrete thing is that Stage 4 will happen when everything is running Apple’s in- house processors.
By this point, consumers will be quite familiar with the ARM Macs existing, and developers have had have enough time to transition apps fully over to the newly unified system. Any performance, battery life, or app support concerns will not be an issue at this point.
There are no more details here, it’s the end of the road, but we are left with a number of questions.
It is unclear if Apple will stick to AMD's GPUs or whether they will instead opt to use their in-house graphics solutions that have been used since the A11 series of processors.
How Thunderbolt support on these models of Mac will be achieved is unknown. While Intel has made it openly available for use, and there are plans to have USB and Thunderbolt combined in a single standard, it’s still unclear how it will play along with Apple processors. Presently, iPhones do support connecting devices via PCI Express to the processor, but it has only been used for iPhone and iPad storage. The current Apple processors simply lack the number of lanes required for even the lowest end MacBook Pro. This is an issue that would need to be addressed in order to ship a full desktop-grade platform.
There is also the question of upgradability for desktop models, and if and how there will be a replaceable, socketed version of these processors. Will standard desktop and laptop memory modules play nicely with these ARM processors? Will they drop standard memory across the board, in favor of soldered options, or continue to support user-configurable memory on some models? Will my 2023 Mac Pro play nicely with a standard PCI Express device that I buy off the shelf? Will we see a return of “Mac Edition” PCI devices?
There are still a lot of unknowns, and guessing any further in advance is too difficult. The only thing that is certain, however, is that Apple processors coming to Mac is very much within arm’s reach.
submitted by Fudge_0001 to apple [link] [comments]

Virtual Reality: Where it is and where it's going

VR is not what a lot of people think it is. It's not comparable to racing wheels, Kinect, or 3DTVs. It offers a shift that the game industry hasn't had before; a first of it's kind. I'm going to outline what VR is like today in despite of the many misconceptions around it and what it will be like as it grows. What people find to be insurmountable problems are often solvable.
What is VR in 2020?
Something far more versatile and far-reaching than people comprehend. All game genres and camera perspectives work, so you're still able to access the types of games you've always enjoyed. It is often thought that VR is a 1st person medium and that's all it can do, but 3rd person and top-down VR games are a thing and in various cases are highly praised. Astro Bot, a 3rd person platformer, was the highest rated VR game before Half-Life: Alyx.
Lets crush some misconceptions of 2020 VR:
So what are the problems with VR in 2020?
Despite these downsides, VR still offers something truly special. What it enables is not just a more immersive way to game, but new ways to feel, to experience stories, to cooperate or fight against other players, and a plethora of new ways to interact which is the beating heart of gaming as a medium.
To give some examples, Boneworks is a game that has experimental full body physics and the amount of extra agency it provides is staggering. When you can actually manipulate physics on a level this intimately where you are able to directly control and manipulate things in a way that traditional gaming simply can't allow, it opens up a whole new avenue of gameplay and game design.
Things aren't based on a series of state machines anymore. "Is the player pressing the action button to climb this ladder or not?" "Is the player pressing the aim button to aim down the sights or not?"
These aren't binary choices in VR. Everything is freeform and you can basically be in any number of states at a given time. Instead of climbing a ladder with an animation lock, you can grab on with one hand while aiming with the other, or if it's physically modelled, you could find a way to pick it up and plant it on a pipe sticking out of the ground to make your own makeshift trap where you spin it around as it pivots on top of the pipe, knocking anything away that comes close by. That's the power of physics in VR. You do things you think of in the same vain as reality instead of thinking inside the set limitations of the designers. Even MGSV has it's limitations with the freedom it provides, but that expands exponentially with 6DoF VR input and physics.
I talked about how VR could make you feel things. A character or person that gets close to you in VR is going to invade your literal personal space. Heights are possibly going to start feeling like you are biologically in danger. The idea of tight spaces in say, a horror game, can cause claustrophobia. The way you move or interact with things can give off subtle almost phantom-limb like feelings because of the overwhelming visual and audio stimulation that enables you to do things that you haven't experienced with your real body; an example being floating around in zero gravity in Lone Echo.
So it's not without it's share of problems, but it's an incredibly versatile gaming technology in 2020. It's also worth noting just how important it is as a non-gaming device as well, because there simply isn't a more suitably combative device against a world-wide pandemic than VR. Simply put, it's one of the most important devices you can get right now for that reason alone as you can socially connect with no distancing with face to face communication, travel and attend all sorts of events, and simply manage your mental and physical health in ways that the average person wishes so badly for right now.
Where VR is (probably) going to be in 5 years
You can expect a lot. A seismic shift that will make the VR of today feel like something very different. This is because the underlying technology is being reinvented with entirely custom tech that no longer relies on cell phone panels and lenses that have existed for decades.
That's enough to solve almost all the issues of the technology and make it a buy-in for the average gamer. In 5 years, we should really start to see the blending of reality and virtual reality and how close the two can feel
Where VR is (probably) going to be in 10 years
In short, as good as if not better than the base technology of Ready Player One which consists of a visor and gloves. Interestingly, RPO missed out on the merging of VR and AR which will play an important part of the future of HMDs as they will become more versatile, easier to multi-task with, and more engrained into daily life where physical isolation is only a user choice. Useful treadmills and/or treadmill shoes as well as haptic suits will likely become (and stay) enthusiast items that are incredible in their own right but due to the commitment, aren't applicable to the average person - in a way, just like RPO.
At this stage, VR is mainstream with loads of AAA content coming out yearly and providing gaming experiences that are incomprehensible to most people today.
Overall, the future of VR couldn't be brighter. It's absolutely here to stay, it's more incredible than people realize today, and it's only going to get exponentially better and more convenient in ways that people can't imagine.
submitted by DarthBuzzard to truegaming [link] [comments]

Microservices: Service-to-service communication

The following excerpt about microservice communication is from the new Microsoft eBook, Architecting Cloud-Native .NET Apps for Azure. The book is freely available for online reading and in a downloadable .PDF format at https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/

Microservice Guidance
When constructing a cloud-native application, you'll want to be sensitive to how back-end services communicate with each other. Ideally, the less inter-service communication, the better. However, avoidance isn't always possible as back-end services often rely on one another to complete an operation.
There are several widely accepted approaches to implementing cross-service communication. The type of communication interaction will often determine the best approach.
Consider the following interaction types:
Microservice systems typically use a combination of these interaction types when executing operations that require cross-service interaction. Let's take a close look at each and how you might implement them.

Queries

Many times, one microservice might need to query another, requiring an immediate response to complete an operation. A shopping basket microservice may need product information and a price to add an item to its basket. There are a number of approaches for implementing query operations.

Request/Response Messaging

One option for implementing this scenario is for the calling back-end microservice to make direct HTTP requests to the microservices it needs to query, shown in Figure 4-8.

Figure 4-8. Direct HTTP communication
While direct HTTP calls between microservices are relatively simple to implement, care should be taken to minimize this practice. To start, these calls are always synchronous and will block the operation until a result is returned or the request times outs. What were once self-contained, independent services, able to evolve independently and deploy frequently, now become coupled to each other. As coupling among microservices increase, their architectural benefits diminish.
Executing an infrequent request that makes a single direct HTTP call to another microservice might be acceptable for some systems. However, high-volume calls that invoke direct HTTP calls to multiple microservices aren't advisable. They can increase latency and negatively impact the performance, scalability, and availability of your system. Even worse, a long series of direct HTTP communication can lead to deep and complex chains of synchronous microservices calls, shown in Figure 4-9:

Figure 4-9. Chaining HTTP queries
You can certainly imagine the risk in the design shown in the previous image. What happens if Step #3 fails? Or Step #8 fails? How do you recover? What if Step #6 is slow because the underlying service is busy? How do you continue? Even if all works correctly, think of the latency this call would incur, which is the sum of the latency of each step.
The large degree of coupling in the previous image suggests the services weren't optimally modeled. It would behoove the team to revisit their design.

Materialized View pattern

A popular option for removing microservice coupling is the Materialized View pattern. With this pattern, a microservice stores its own local, denormalized copy of data that's owned by other services. Instead of the Shopping Basket microservice querying the Product Catalog and Pricing microservices, it maintains its own local copy of that data. This pattern eliminates unnecessary coupling and improves reliability and response time. The entire operation executes inside a single process. We explore this pattern and other data concerns in Chapter 5.

Service Aggregator Pattern

Another option for eliminating microservice-to-microservice coupling is an Aggregator microservice, shown in purple in Figure 4-10.

Figure 4-10. Aggregator microservice
The pattern isolates an operation that makes calls to multiple back-end microservices, centralizing its logic into a specialized microservice. The purple checkout aggregator microservice in the previous figure orchestrates the workflow for the Checkout operation. It includes calls to several back-end microservices in a sequenced order. Data from the workflow is aggregated and returned to the caller. While it still implements direct HTTP calls, the aggregator microservice reduces direct dependencies among back-end microservices.

Request/Reply Pattern

Another approach for decoupling synchronous HTTP messages is a Request-Reply Pattern, which uses queuing communication. Communication using a queue is always a one-way channel, with a producer sending the message and consumer receiving it. With this pattern, both a request queue and response queue are implemented, shown in Figure 4-11.

Figure 4-11. Request-reply pattern
Here, the message producer creates a query-based message that contains a unique correlation ID and places it into a request queue. The consuming service dequeues the messages, processes it and places the response into the response queue with the same correlation ID. The producer service dequeues the message, matches it with the correlation ID and continues processing. We cover queues in detail in the next section.

Commands

Another type of communication interaction is a command. A microservice may need another microservice to perform an action. The Ordering microservice may need the Shipping microservice to create a shipment for an approved order. In Figure 4-12, one microservice, called a Producer, sends a message to another microservice, the Consumer, commanding it to do something.

Figure 4-12. Command interaction with a queue
Most often, the Producer doesn't require a response and can fire-and-forget the message. If a reply is needed, the Consumer sends a separate message back to Producer on another channel. A command message is best sent asynchronously with a message queue. supported by a lightweight message broker. In the previous diagram, note how a queue separates and decouples both services.
A message queue is an intermediary construct through which a producer and consumer pass a message. Queues implement an asynchronous, point-to-point messaging pattern. The Producer knows where a command needs to be sent and routes appropriately. The queue guarantees that a message is processed by exactly one of the consumer instances that are reading from the channel. In this scenario, either the producer or consumer service can scale out without affecting the other. As well, technologies can be disparate on each side, meaning that we might have a Java microservice calling a Golang microservice.
In chapter 1, we talked about backing services. Backing services are ancillary resources upon which cloud-native systems depend. Message queues are backing services. The Azure cloud supports two types of message queues that your cloud-native systems can consume to implement command messaging: Azure Storage Queues and Azure Service Bus Queues.

Azure Storage Queues

Azure storage queues offer a simple queueing infrastructure that is fast, affordable, and backed by Azure storage accounts.
Azure Storage Queues feature a REST-based queuing mechanism with reliable and persistent messaging. They provide a minimal feature set, but are inexpensive and store millions of messages. Their capacity ranges up to 500 TB. A single message can be up to 64 KB in size.
You can access messages from anywhere in the world via authenticated calls using HTTP or HTTPS. Storage queues can scale out to large numbers of concurrent clients to handle traffic spikes.
That said, there are limitations with the service:
Figure 4-13 shows the hierarchy of an Azure Storage Queue.

Figure 4-13. Storage queue hierarchy
In the previous figure, note how storage queues store their messages in the underlying Azure Storage account.
For developers, Microsoft provides several client and server-side libraries for Storage queue processing. Most major platforms are supported including .NET, Java, JavaScript, Ruby, Python, and Go. Developers should never communicate directly with these libraries. Doing so will tightly couple your microservice code to the Azure Storage Queue service. It's a better practice to insulate the implementation details of the API. Introduce an intermediation layer, or intermediate API, that exposes generic operations and encapsulates the concrete library. This loose coupling enables you to swap out one queuing service for another without having to make changes to the mainline service code.
Azure Storage queues are an economical option to implement command messaging in your cloud-native applications. Especially when a queue size will exceed 80 GB, or a simple feature set is acceptable. You only pay for the storage of the messages; there are no fixed hourly charges.

Azure Service Bus Queues

For more complex messaging requirements, consider Azure Service Bus queues.
Sitting atop a robust message infrastructure, Azure Service Bus supports a brokered messaging model. Messages are reliably stored in a broker (the queue) until received by the consumer. The queue guarantees First-In/First-Out (FIFO) message delivery, respecting the order in which messages were added to the queue.
The size of a message can be much larger, up to 256 KB. Messages are persisted in the queue for an unlimited period of time. Service Bus supports not only HTTP-based calls, but also provides full support for the AMQP protocol. AMQP is an open-standard across vendors that supports a binary protocol and higher degrees of reliability.
Service Bus provides a rich set of features, including transaction support and a duplicate detection feature. The queue guarantees "at most once delivery" per message. It automatically discards a message that has already been sent. If a producer is in doubt, it can resend the same message, and Service Bus guarantees that only one copy will be processed. Duplicate detection frees you from having to build additional infrastructure plumbing.
Two more enterprise features are partitioning and sessions. A conventional Service Bus queue is handled by a single message broker and stored in a single message store. But, Service Bus Partitioning spreads the queue across multiple message brokers and message stores. The overall throughput is no longer limited by the performance of a single message broker or messaging store. A temporary outage of a messaging store doesn't render a partitioned queue unavailable.
Service Bus Sessions provide a way to group-related messages. Imagine a workflow scenario where messages must be processed together and the operation completed at the end. To take advantage, sessions must be explicitly enabled for the queue and each related messaged must contain the same session ID.
However, there are some important caveats: Service Bus queues size is limited to 80 GB, which is much smaller than what's available from store queues. Additionally, Service Bus queues incur a base cost and charge per operation.
Figure 4-14 outlines the high-level architecture of a Service Bus queue.

Figure 4-14. Service Bus queue
In the previous figure, note the point-to-point relationship. Two instances of the same provider are enqueuing messages into a single Service Bus queue. Each message is consumed by only one of three consumer instances on the right. Next, we discuss how to implement messaging where different consumers may all be interested the same message.

Events

Message queuing is an effective way to implement communication where a producer can asynchronously send a consumer a message. However, what happens when many different consumers are interested in the same message? A dedicated message queue for each consumer wouldn't scale well and would become difficult to manage.
To address this scenario, we move to the third type of message interaction, the event. One microservice announces that an action had occurred. Other microservices, if interested, react to the action, or event.
Eventing is a two-step process. For a given state change, a microservice publishes an event to a message broker, making it available to any other interested microservice. The interested microservice is notified by subscribing to the event in the message broker. You use the Publish/Subscribe pattern to implement event-based communication.
Figure 4-15 shows a shopping basket microservice publishing an event with two other microservices subscribing to it.

Figure 4-15. Event-Driven messaging
Note the event bus component that sits in the middle of the communication channel. It's a custom class that encapsulates the message broker and decouples it from the underlying application. The ordering and inventory microservices independently operate the event with no knowledge of each other, nor the shopping basket microservice. When the registered event is published to the event bus, they act upon it.
With eventing, we move from queuing technology to topics. A topic is similar to a queue, but supports a one-to-many messaging pattern. One microservice publishes a message. Multiple subscribing microservices can choose to receive and act upon that message. Figure 4-16 shows a topic architecture.

Figure 4-16. Topic architecture
In the previous figure, publishers send messages to the topic. At the end, subscribers receive messages from subscriptions. In the middle, the topic forwards messages to subscriptions based on a set of rules, shown in dark blue boxes. Rules act as a filter that forward specific messages to a subscription. Here, a "GetPrice" event would be sent to the price and logging Subscriptions as the logging subscription has chosen to receive all messages. A "GetInformation" event would be sent to the information and logging subscriptions.
The Azure cloud supports two different topic services: Azure Service Bus Topics and Azure EventGrid.

Azure Service Bus Topics

Sitting on top of the same robust brokered message model of Azure Service Bus queues are Azure Service Bus Topics. A topic can receive messages from multiple independent publishers and send messages to up to 2,000 subscribers. Subscriptions can be dynamically added or removed at runtime without stopping the system or recreating the topic.
Many advanced features from Azure Service Bus queues are also available for topics, including Duplicate Detection and Transaction support. By default, Service Bus topics are handled by a single message broker and stored in a single message store. But, Service Bus Partitioning scales a topic by spreading it across many message brokers and message stores.
Scheduled Message Delivery tags a message with a specific time for processing. The message won't appear in the topic before that time. Message Deferral enables you to defer a retrieval of a message to a later time. Both are commonly used in workflow processing scenarios where operations are processed in a particular order. You can postpone processing of received messages until prior work has been completed.
Service Bus topics are a robust and proven technology for enabling publish/subscribe communication in your cloud-native systems.

Azure Event Grid

While Azure Service Bus is a battle-tested messaging broker with a full set of enterprise features, Azure Event Grid is the new kid on the block.
At first glance, Event Grid may look like just another topic-based messaging system. However, it's different in many ways. Focused on event-driven workloads, it enables real-time event processing, deep Azure integration, and an open-platform - all on serverless infrastructure. It's designed for contemporary cloud-native and serverless applications
As a centralized eventing backplane, or pipe, Event Grid reacts to events inside Azure resources and from your own services.
Event notifications are published to an Event Grid Topic, which, in turn, routes each event to a subscription. Subscribers map to subscriptions and consume the events. Like Service Bus, Event Grid supports a filtered subscriber model where a subscription sets rule for the events it wishes to receive. Event Grid provides fast throughput with a guarantee of 10 million events per second enabling near real-time delivery - far more than what Azure Service Bus can generate.
A sweet spot for Event Grid is its deep integration into the fabric of Azure infrastructure. An Azure resource, such as Cosmos DB, can publish built-in events directly to other interested Azure resources - without the need for custom code. Event Grid can publish events from an Azure Subscription, Resource Group, or Service, giving developers fine-grained control over the lifecycle of cloud resources. However, Event Grid isn't limited to Azure. It's an open platform that can consume custom HTTP events published from applications or third-party services and route events to external subscribers.
When publishing and subscribing to native events from Azure resources, no coding is required. With simple configuration, you can integrate events from one Azure resource to another leveraging built-in plumbing for Topics and Subscriptions. Figure 4-17 shows the anatomy of Event Grid.

Figure 4-17. Event Grid anatomy
A major difference between EventGrid and Service Bus is the underlying message exchange pattern.
Service Bus implements an older style pull model in which the downstream subscriber actively polls the topic subscription for new messages. On the upside, this approach gives the subscriber full control of the pace at which it processes messages. It controls when and how many messages to process at any given time. Unread messages remain in the subscription until processed. A significant shortcoming is the latency between the time the event is generated and the polling operation that pulls that message to the subscriber for processing. Also, the overhead of constant polling for the next event consumes resources and money.
EventGrid, however, is different. It implements a push model in which events are sent to the EventHandlers as received, giving near real-time event delivery. It also reduces cost as the service is triggered only when it's needed to consume an event – not continually as with polling. That said, an event handler must handle the incoming load and provide throttling mechanisms to protect itself from becoming overwhelmed. Many Azure services that consume these events, such as Azure Functions and Logic Apps provide automatic autoscaling capabilities to handle increased loads.
Event Grid is a fully managed serverless cloud service. It dynamically scales based on your traffic and charges you only for your actual usage, not pre-purchased capacity. The first 100,000 operations per month are free – operations being defined as event ingress (incoming event notifications), subscription delivery attempts, management calls, and filtering by subject. With 99.99% availability, EventGrid guarantees the delivery of an event within a 24-hour period, with built-in retry functionality for unsuccessful delivery. Undelivered messages can be moved to a "dead-letter" queue for resolution. Unlike Azure Service Bus, Event Grid is tuned for fast performance and doesn't support features like ordered messaging, transactions, and sessions.

Streaming messages in the Azure cloud

Azure Service Bus and Event Grid provide great support for applications that expose single, discrete events like a new document has been inserted into a Cosmos DB. But, what if your cloud-native system needs to process a stream of related events? Event streams are more complex. They're typically time-ordered, interrelated, and must be processed as a group.
Azure Event Hub is a data streaming platform and event ingestion service that collects, transforms, and stores events. It's fine-tuned to capture streaming data, such as continuous event notifications emitted from a telemetry context. The service is highly scalable and can store and process millions of events per second. Shown in Figure 4-18, it's often a front door for an event pipeline, decoupling ingest stream from event consumption.

Figure 4-18. Azure Event Hub
Event Hub supports low latency and configurable time retention. Unlike queues and topics, Event Hubs keep event data after it's been read by a consumer. This feature enables other data analytic services, both internal and external, to replay the data for further analysis. Events stored in event hub are only deleted upon expiration of the retention period, which is one day by default, but configurable.
Event Hub supports common event publishing protocols including HTTPS and AMQP. It also supports Kafka 1.0. Existing Kafka applications can communicate with Event Hub using the Kafka protocol providing an alternative to managing large Kafka clusters. Many open-source cloud-native systems embrace Kafka.
Event Hubs implements message streaming through a partitioned consumer model in which each consumer only reads a specific subset, or partition, of the message stream. This pattern enables tremendous horizontal scale for event processing and provides other stream-focused features that are unavailable in queues and topics. A partition is an ordered sequence of events that is held in an event hub. As newer events arrive, they're added to the end of this sequence. Figure 4-19 shows partitioning in an Event Hub.

Figure 4-19. Event Hub partitioning
Instead of reading from the same resource, each consumer group reads across a subset, or partition, of the message stream.
For cloud-native applications that must stream large numbers of events, Azure Event Hub can be a robust and affordable solution.

About the Author:
Rob Vettor is a Principal Cloud-Native Architect for the Microservice Enterprise Service Group. Reach out to Rob at [[email protected]](mailto:[email protected]) or https://thinkingincloudnative.com/weclome-to-cloud-native/
submitted by robvettor to microservices [link] [comments]

[x86] Sharing very early build of new 80186 PC emulator, looking for input

EDIT 2020-07-12: Updated link with latest version with many improvements, and updated GitHub link. I renamed the program.
This is an almost total rewrite of an old emulator of mine. It's in a usable state, but it's still got some bugs and is missing a lot of features that I plan to add. For example, most BIOSes break on my 8259 PIC emulation. A lot of work left to do.
I wanted to share it here as is because I'm looking for input on usability as well as opinions on the source code in general, if anybody is interested in giving it a shot. Either if you like it so far, and/or have some constructive criticism.
Here is the GitHub: https://github.com/mikechambers84/XTulator
And here is a pre-built 32-bit Windows binary, along with the ROM set and a small hard disk image that includes some ancient abandonware for testing purposes.
https://gofile.io/d/8wrNHA
You can boot the included disk image with the command XTulator -hd0 hd0.img
Use XTulator -h to see all of the available options. One cool feature that I have fun with is the TCP modem emulator. You can use it to connect to telnet BBSes using old school DOS terminal software, which sees it as if it were connected to a serial modem. The code for that module is a disaster that needs to be cleaned up, though...
EDIT 2020-07-12: There's working NE2000 ethernet emulation now. I adapted the module from Bochs. You'll need Npcap installed to use it. Use XTulator -h to see command line options for using the network.
The highest priority bugfix is the 8259 PIC code, because I want to see it booting other BIOSes. Next up is getting the OPL2 code to sound reasonable. I am now using Nuked OPL, though there is a volume issue with some channels in some games. Not sure why yet.
My Sound Blaster code is working pretty well, but a few games glitch out. I'll be working on that. I'm also going to be fixing a few small remaining issues with EGA/VGA soon, including some video timing inaccuracies. (Hblank, vsync etc)
I also still need to find the best cross-platform method of providing a file open dialog for changing floppy images on the fly.
Very long term goals are 286, then 386+ support including protected mode. I'd love to see it booting Linux or more modern versions of Windows than 3.0 one day. I suppose I'll have to rename it then. :)
submitted by UselessSoftware to EmuDev [link] [comments]

what is this i just downloaded (youtube code?)

so this is kinda a wierd story. I was planning to restart my computer. (cant remember why) I spend most of my time watching youtube videos so i had alot of tabs open. So i was watching the videos then deleting the tab but not opening new tabs. So i was down 2 i think 1 it was a pretty long video so i tried to open a youtube home page tab just to look while i listened to the video. And this is a short exerp of what i got.





YouTube











submitted by inhuman7773 to techsupport [link] [comments]

A Complete Penetration Testing & Hacking Tools List for Hackers & Security Professionals

A Complete Penetration Testing & Hacking Tools List for Hackers & Security Professionals

https://i.redd.it/7hvs58an33e41.gif
Penetration testing & Hacking Tools are more often used by security industries to test the vulnerabilities in network and applications. Here you can find the Comprehensive Penetration testing & Hacking Tools list that covers Performing Penetration testing Operation in all the Environment. Penetration testing and ethical hacking tools are a very essential part of every organization to test the vulnerabilities and patch the vulnerable system.
Also, Read What is Penetration Testing? How to do Penetration Testing?
Penetration Testing & Hacking Tools ListOnline Resources – Hacking ToolsPenetration Testing Resources
Exploit Development
OSINT Resources
Social Engineering Resources
Lock Picking Resources
Operating Systems
Hacking ToolsPenetration Testing Distributions
  • Kali – GNU/Linux distribution designed for digital forensics and penetration testing Hacking Tools
  • ArchStrike – Arch GNU/Linux repository for security professionals and enthusiasts.
  • BlackArch – Arch GNU/Linux-based distribution with best Hacking Tools for penetration testers and security researchers.
  • Network Security Toolkit (NST) – Fedora-based bootable live operating system designed to provide easy access to best-of-breed open source network security applications.
  • Pentoo – Security-focused live CD based on Gentoo.
  • BackBox – Ubuntu-based distribution for penetration tests and security assessments.
  • Parrot – Distribution similar to Kali, with multiple architectures with 100 of Hacking Tools.
  • Buscador – GNU/Linux virtual machine that is pre-configured for online investigators.
  • Fedora Security Lab – provides a safe test environment to work on security auditing, forensics, system rescue, and teaching security testing methodologies.
  • The Pentesters Framework – Distro organized around the Penetration Testing Execution Standard (PTES), providing a curated collection of utilities that eliminates often unused toolchains.
  • AttifyOS – GNU/Linux distribution focused on tools useful during the Internet of Things (IoT) security assessments.
Docker for Penetration Testing
Multi-paradigm Frameworks
  • Metasploit – post-exploitation Hacking Tools for offensive security teams to help verify vulnerabilities and manage security assessments.
  • Armitage – Java-based GUI front-end for the Metasploit Framework.
  • Faraday – Multiuser integrated pentesting environment for red teams performing cooperative penetration tests, security audits, and risk assessments.
  • ExploitPack – Graphical tool for automating penetration tests that ships with many pre-packaged exploits.
  • Pupy – Cross-platform (Windows, Linux, macOS, Android) remote administration and post-exploitation tool,
Vulnerability Scanners
  • Nexpose – Commercial vulnerability and risk management assessment engine that integrates with Metasploit, sold by Rapid7.
  • Nessus – Commercial vulnerability management, configuration, and compliance assessment platform, sold by Tenable.
  • OpenVAS – Free software implementation of the popular Nessus vulnerability assessment system.
  • Vuls – Agentless vulnerability scanner for GNU/Linux and FreeBSD, written in Go.
Static Analyzers
  • Brakeman – Static analysis security vulnerability scanner for Ruby on Rails applications.
  • cppcheck – Extensible C/C++ static analyzer focused on finding bugs.
  • FindBugs – Free software static analyzer to look for bugs in Java code.
  • sobelow – Security-focused static analysis for the Phoenix Framework.
  • bandit – Security oriented static analyzer for Python code.
Web Scanners
  • Nikto – Noisy but fast black box web server and web application vulnerability scanner.
  • Arachni – Scriptable framework for evaluating the security of web applications.
  • w3af – Hacking Tools for Web application attack and audit framework.
  • Wapiti – Black box web application vulnerability scanner with built-in fuzzer.
  • SecApps – In-browser web application security testing suite.
  • WebReaver – Commercial, graphical web application vulnerability scanner designed for macOS.
  • WPScan – Hacking Tools of the Black box WordPress vulnerability scanner.
  • cms-explorer – Reveal the specific modules, plugins, components and themes that various websites powered by content management systems are running.
  • joomscan – one of the best Hacking Tools for Joomla vulnerability scanner.
  • ACSTIS – Automated client-side template injection (sandbox escape/bypass) detection for AngularJS.
Network Tools
  • zmap – Open source network scanner that enables researchers to easily perform Internet-wide network studies.
  • nmap – Free security scanner for network exploration & security audits.
  • pig – one of the Hacking Tools forGNU/Linux packet crafting.
  • scanless – Utility for using websites to perform port scans on your behalf so as not to reveal your own IP.
  • tcpdump/libpcap – Common packet analyzer that runs under the command line.
  • Wireshark – Widely-used graphical, cross-platform network protocol analyzer.
  • Network-Tools.com – Website offering an interface to numerous basic network utilities like ping, traceroute, whois, and more.
  • netsniff-ng – Swiss army knife for network sniffing.
  • Intercepter-NG – Multifunctional network toolkit.
  • SPARTA – Graphical interface offering scriptable, configurable access to existing network infrastructure scanning and enumeration tools.
  • dnschef – Highly configurable DNS proxy for pentesters.
  • DNSDumpster – one of the Hacking Tools for Online DNS recon and search service.
  • CloudFail – Unmask server IP addresses hidden behind Cloudflare by searching old database records and detecting misconfigured DNS.
  • dnsenum – Perl script that enumerates DNS information from a domain, attempts zone transfers, performs a brute force dictionary style attack and then performs reverse look-ups on the results.
  • dnsmap – One of the Hacking Tools for Passive DNS network mapper.
  • dnsrecon – One of the Hacking Tools for DNS enumeration script.
  • dnstracer – Determines where a given DNS server gets its information from, and follows the chain of DNS servers.
  • passivedns-client – Library and query tool for querying several passive DNS providers.
  • passivedns – Network sniffer that logs all DNS server replies for use in a passive DNS setup.
  • Mass Scan – best Hacking Tools for TCP port scanner, spews SYN packets asynchronously, scanning the entire Internet in under 5 minutes.
  • Zarp – Network attack tool centered around the exploitation of local networks.
  • mitmproxy – Interactive TLS-capable intercepting HTTP proxy for penetration testers and software developers.
  • Morpheus – Automated ettercap TCP/IP Hacking Tools .
  • mallory – HTTP/HTTPS proxy over SSH.
  • SSH MITM – Intercept SSH connections with a proxy; all plaintext passwords and sessions are logged to disk.
  • Netzob – Reverse engineering, traffic generation and fuzzing of communication protocols.
  • DET – Proof of concept to perform data exfiltration using either single or multiple channel(s) at the same time.
  • pwnat – Punches holes in firewalls and NATs.
  • dsniff – Collection of tools for network auditing and pentesting.
  • tgcd – Simple Unix network utility to extend the accessibility of TCP/IP based network services beyond firewalls.
  • smbmap – Handy SMB enumeration tool.
  • scapy – Python-based interactive packet manipulation program & library.
  • Dshell – Network forensic analysis framework.
  • Debookee – Simple and powerful network traffic analyzer for macOS.
  • Dripcap – Caffeinated packet analyzer.
  • Printer Exploitation Toolkit (PRET) – Tool for printer security testing capable of IP and USB connectivity, fuzzing, and exploitation of PostScript, PJL, and PCL printer language features.
  • Praeda – Automated multi-function printer data harvester for gathering usable data during security assessments.
  • routersploit – Open source exploitation framework similar to Metasploit but dedicated to embedded devices.
  • evilgrade – Modular framework to take advantage of poor upgrade implementations by injecting fake updates.
  • XRay – Network (sub)domain discovery and reconnaissance automation tool.
  • Ettercap – Comprehensive, mature suite for machine-in-the-middle attacks.
  • BetterCAP – Modular, portable and easily extensible MITM framework.
  • CrackMapExec – A swiss army knife for pentesting networks.
  • impacket – A collection of Python classes for working with network protocols.
Wireless Network Hacking Tools
  • Aircrack-ng – Set of Penetration testing & Hacking Tools list for auditing wireless networks.
  • Kismet – Wireless network detector, sniffer, and IDS.
  • Reaver – Brute force attack against Wifi Protected Setup.
  • Wifite – Automated wireless attack tool.
  • Fluxion – Suite of automated social engineering-based WPA attacks.
Transport Layer Security Tools
  • SSLyze – Fast and comprehensive TLS/SSL configuration analyzer to help identify security misconfigurations.
  • tls_prober – Fingerprint a server’s SSL/TLS implementation.
  • testssl.sh – Command-line tool which checks a server’s service on any port for the support of TLS/SSL ciphers, protocols as well as some cryptographic flaws.
Web Exploitation
  • OWASP Zed Attack Proxy (ZAP) – Feature-rich, scriptable HTTP intercepting proxy and fuzzer for penetration testing web applications.
  • Fiddler – Free cross-platform web debugging proxy with user-friendly companion tools.
  • Burp Suite – One of the Hacking Tools ntegrated platform for performing security testing of web applications.
  • autochrome – Easy to install a test browser with all the appropriate settings needed for web application testing with native Burp support, from NCCGroup.
  • Browser Exploitation Framework (BeEF) – Command and control server for delivering exploits to commandeered Web browsers.
  • Offensive Web Testing Framework (OWTF) – Python-based framework for pentesting Web applications based on the OWASP Testing Guide.
  • WordPress Exploit Framework – Ruby framework for developing and using modules which aid in the penetration testing of WordPress powered websites and systems.
  • WPSploit – Exploit WordPress-powered websites with Metasploit.
  • SQLmap – Automatic SQL injection and database takeover tool.
  • tplmap – Automatic server-side template injection and Web server takeover Hacking Tools.
  • weevely3 – Weaponized web shell.
  • Wappalyzer – Wappalyzer uncovers the technologies used on websites.
  • WhatWeb – Website fingerprinter.
  • BlindElephant – Web application fingerprinter.
  • wafw00f – Identifies and fingerprints Web Application Firewall (WAF) products.
  • fimap – Find, prepare, audit, exploit and even google automatically for LFI/RFI bugs.
  • Kadabra – Automatic LFI exploiter and scanner.
  • Kadimus – LFI scan and exploit tool.
  • liffy – LFI exploitation tool.
  • Commix – Automated all-in-one operating system command injection and exploitation tool.
  • DVCS Ripper – Rip web-accessible (distributed) version control systems: SVN/GIT/HG/BZR.
  • GitTools – One of the Hacking Tools that Automatically find and download Web-accessible .git repositories.
  • sslstrip –One of the Hacking Tools Demonstration of the HTTPS stripping attacks.
  • sslstrip2 – SSLStrip version to defeat HSTS.
  • NoSQLmap – Automatic NoSQL injection and database takeover tool.
  • VHostScan – A virtual host scanner that performs reverse lookups, can be used with pivot tools, detect catch-all scenarios, aliases, and dynamic default pages.
  • FuzzDB – Dictionary of attack patterns and primitives for black-box application fault injection and resource discovery.
  • EyeWitness – Tool to take screenshots of websites, provide some server header info, and identify default credentials if possible.
  • webscreenshot – A simple script to take screenshots of the list of websites.
Hex Editors
  • HexEdit.js – Browser-based hex editing.
  • Hexinator – World’s finest (proprietary, commercial) Hex Editor.
  • Frhed – Binary file editor for Windows.
  • 0xED – Native macOS hex editor that supports plug-ins to display custom data types.
File Format Analysis Tools
  • Kaitai Struct – File formats and network protocols dissection language and web IDE, generating parsers in C++, C#, Java, JavaScript, Perl, PHP, Python, Ruby.
  • Veles – Binary data visualization and analysis tool.
  • Hachoir – Python library to view and edit a binary stream as the tree of fields and tools for metadata extraction.
read more https://oyeitshacker.blogspot.com/2020/01/penetration-testing-hacking-tools.html
submitted by icssindia to HowToHack [link] [comments]

Imagining a Cities:Skylines 2

So how’s your quarantine going? I’ve been playing a fair amount of C:S lately and thought I might speculate on what could be improved in Cities: Skylines 2. Besides, it’s not like I have anything better to do.
What C:S gets right and wrong
Besides great modability and post-release support, C:S combines an agent based economy with a sense of scale. It also has the kind of road design tools that SC4 veterans would have killed for. District based city planning for things like universities was one of the best innovations in the genre in years, and the introduction of industry supply chains, while clunky and tacked on, brought much needed depth to the game.
C:S suffers most notably from a lack of revisit rate to previously constructed things. Build a power plant: forget about it. Build a port: forget about it. Build a downtown: forget about it. The player isn’t incentivized to revisit old parts of the city to upgrade and improve them. The district system for universities and industry was a fantastic innovation that demonstrated how to do this concept well, and consequently they are some of the most fun and engaging parts of the game.
The biggest criticism of C:S, despite its powerful design tools, is that it feels like a city painter. The systems feel rich at first, but become very formulaic after a few hours. There are no hard trade-offs. Providing every inch of your city with maximum services will not bankrupt you, nor will an economy of nothing but the rich and well-educated collapse from a lack of unskilled labor. In the end, every city dies of boredom once the player exhausts the game’s relatively shallow well of novelty.
The biggest areas for Improvement
submitted by naive_grandeur to CitiesSkylines [link] [comments]

Addressing Canada’s Employment Insurance Gap For Self-Employed Workers

Source: TD
Ksenia Bushmeneva, Economist
Dated July 15th, 2020

Highlights


Chart 1 - Workers in More Precarious Employment See Steep Job Losses

Chart 2 - COVID-19 Self-employed to Cut Hours Worked Drastically

EI Leaves Many Non-Standard Workers Behind


Chart 3 - Self-employed Workers Much More Likely to Apply for CERB

Chart 4 - Prevalence of Self-employment Varies by Province

What Complicates Offering EI Coverage For Non-Standard Workers


Chart 5 - Maternity and Family Benefits Available to Self-employment

Chart 6 - Sickness, Disability, and Work Injury Coverage Available to Self-Employed

Some Solutions Based on The International Experience


Chart 7 - Unemployment Benefits Coverage Options to Self-employed

Chart 8 - Old-age Pensions Coverage Options Available to Self-employed

Concluding Remarks


References

  1. “Employment Insurance Coverage Survey, 2018”. Statistics Canada. https://www150.statcan.gc.ca/n1/daily-quotidien/191114/dq191114a-eng.htm
  2. Sunil Johal & Erich Hartmann. “Facilitating the Future of Work Through Modernizing EI System”. The Mowat Center. https://ppforum.ca/wp-content/uploads/2019/05/PPF-Modernizing-EI-for-Future-of-Work-April-2019-EN.pdf
  3. Antonia Asenjo and Clemente Pignatti. “Unemployment insurance schemes around the world: Evidence and policy options.” International Labour Office. https://www.ilo.org/wcmsp5/groups/public/---dgreports/---inst/documents/publication/wcms_723778.pdf
  4. Sung-Hee Jeon and Yuri Ostrovsky. “The impact of COVID-19 on the gig economy: Short- and long-term concerns”. Statistics Canada. https://www150.statcan.gc.ca/n1/en/pub/45-28-0001/2020001/article/00021-eng.pdf?st=x8kZDLV7
  5. Sunil Johal & Erich Hartmann. “Facilitating the Future of Work Through Modernizing EI System”. The Mowat Center. https://ppforum.ca/wp-content/uploads/2019/05/PPF-Modernizing-EI-for-Future-of-Work-April-2019-EN.pdf Ibid.
  6. “Evaluation of the Employment Insurance Special Benefits for Self-employed Workers”. Employment and Social Development Canada. https://www.canada.ca/en/employment-social-development/corporate/reports/evaluations/2016-ei-special-benefits.html
  7. “The Future of Social Protection: what works for non-standard workers?” OECD. https://www.oecd-ilibrary.org/sites/9789264306943-en/1/2/1/index.html?itemId=/content/publication/9789264306943-en&_csp_=60072f6c81e5afb306d1ad580d284396&itemIGO=oecd&itemContentType=book#chapter-d1e549 Ibid.
  8. “Key Small Business Statistics - January 2019”. Statistics Canada. https://www.ic.gc.ca/eic/site/061.nsf/eng/h_03090.html#point1-3 Ibid.
  9. “Government Response To The Fifth Report Of The Standing Committee on The Status of Women. Interim Report on the Maternity and Parental Benefits Under Employment Insurance: the Exclusion of Self-Employed Workers.” https://www.ourcommons.ca/DocumentVieween/39-1/FEWO/report-5/response-8512-391-19
  10. “Evaluation of the Employment Insurance Special Benefits for Self-employed Workers”. Employment and Social Development Canada. https://www.canada.ca/en/employment-social development/corporate/reports/evaluations/2016-ei-special-benefits.html

End Notes

  1. Since 2010 self-employed workers can voluntarily participate in EI Special Benefit for Self-Employed Workers (SBSE) to gain access to many life event-type benefits accessible to regular employees, such as maternity and paternity leave programs, leave due to sickness or to care for an sick family member. In addition to this, current EI system allows certain exceptions for some non-standard workers. For example some individuals who work independently as barbers, hairdressers, taxi drivers, drivers of other passenger vehicles are eligible to receive benefits through the regular EI program. Fishermen are also included as insured persons under the EI Fishing Regulations. In the case of the self- employed fishermen, EI qualification is tied to income. In order to qualify for up to 26 weeks of benefit, they need to have earned between $2,500 to $4,200 in the last 31 weeks.
  2. The two main reasons for not contributing to the EI program were not having worked in the previous 12 months, and non-insurable employment (which includes self-employment).
submitted by AwesomeMathUse to econmonitor [link] [comments]

BINARY OPTIONS BROKERS - TOP 3 Binary Options Brokers 2019 Great Binary Options Strategy  Best Simple Way To Profits  Rewarding Indicators Iq Binomo Pocket Binary Options Platform Reviews - YouTube BINARY SIGNAL SOFTWARE // 90 % ACCURATE WINS//SIGNALS PROVIDER Binary Options Trading Software Development Solutions  Chetu

Binary Options signals are a major requirement for traders to take trading decisions. The signal industry is large and booming one. There are countless signal providers out there, so it becomes really difficult as a trader to make a choice. Binary Options Platform Providers. Binary Options trading is skyrocketing these days owing to the ease of use and simplicity. Another important factor contributing to its popularity is its uncomplicated nature; traders always know what they’ll gain or lose and that too with certainty. We have compared the best regulated binary options brokers and platforms in July 2020 and created this top list. Every broker and platform has been personally reviewed by us to help you find the best binary options platform for both beginners and experts. So, on the platform you can work on the following types of options: - One touch. Binary Options (Wikipedia link) have pros and cons but what is more important to find a good Binary Options Broker. A simple binary option may offer a payout if the price of stock ABC is above $33.74 at 4:30 p.m. Binary options trading is a great way to make a significant profit by accessing and trading the financial market, however it is essential to select the right binary options platforms to ensure success. Choosing one of the top binary options platforms can have a major impact on a trader’s overall success.

[index] [7467] [29881] [6735] [6239] [10753] [23996] [23678] [958] [9602] [16203]

BINARY OPTIONS BROKERS - TOP 3 Binary Options Brokers 2019

The internet is filled with binary options brokers reviews. Some of these provide just the basic information, while others provide very specific details. binary options pro signals best binary options signals providers How to, Binary Option, latest binary bot no loss binary bot iq option robot signal software free download iq option pro signal software Chetu delivers customized software development solutions and IT staff augmentation services for binary options technology providers. As a seamless back-end software development partner, Chetu's ... Binary options are deceptively simple to understand, making them a popular choice for low-skilled traders ... Compare the best binary options signals software providers in 2020. Loading... Best binary options brokers.Web doesn't retain any duty for almost any buying and selling losses you might face as a result of utilizing the information hosted on this Site. The offers contained ...

Flag Counter