How bitcoin works - Bitcoin Wiki

How does ECDSA Encryption work for something like BitCoin? How many "digits" is the private key and public key each?

And theoretically, with proper computing power, how long would it take to crack one of these codes and essentially "reconstruct" a key if you lost it? Sort of like hacking.
I'm writing a story that involves BitCoin and need to understand this. Thanks!
submitted by Raichu93 to NoStupidQuestions [link] [comments]

Interactive explanation of Public-Key Encryption by RSA Algorithm (Bitcoin uses ECDSA instead of RSA)

submitted by f00000000 to CryptocurrencySA [link] [comments]

CRA Plan for Cryptocurrency Spells Death by Taxation

CRA Plan for Cryptocurrency Spells Death by Taxation submitted by LibDragonfly to metacanada [link] [comments]

ECDSA In Bitcoin

Digital signatures are considered the foundation of online sovereignty. The advent of public-key cryptography in 1976 paved the way for the creation of a global communications tool – the Internet, and a completely new form of money – Bitcoin. Although the fundamental properties of public-key cryptography have not changed much since then, dozens of different open-source digital signature schemes are now available to cryptographers.

How ECDSA was incorporated into Bitcoin

When Satoshi Nakamoto, a mystical founder of the first crypto, started working on Bitcoin, one of the key points was to select the signature schemes for an open and public financial system. The requirements were clear. An algorithm should have been widely used, understandable, safe enough, easy, and, what is more important, open-sourced.
Of all the options available at that time, he chose the one that met these criteria: Elliptic Curve Digital Signature Algorithm, or ECDSA.
At that time, native support for ECDSA was provided in OpenSSL, an open set of encryption tools developed by experienced cipher banks in order to increase the confidentiality of online communications. Compared to other popular schemes, ECDSA had such advantages as:
These are extremely useful features for digital money. At the same time, it provides a proportional level of security: for example, a 256-bit ECDSA key has the same level of security as a 3072-bit RSA key (Rivest, Shamir и Adleman) with a significantly smaller key size.

Basic principles of ECDSA

ECDSA is a process that uses elliptic curves and finite fields to “sign” data in such a way that third parties can easily verify the authenticity of the signature, but the signer himself reserves the exclusive opportunity to create signatures. In the case of Bitcoin, the “data” that is signed is a transaction that transfers ownership of bitcoins.
ECDSA has two separate procedures for signing and verifying. Each procedure is an algorithm consisting of several arithmetic operations. The signature algorithm uses the private key, and the verification algorithm uses only the public key.
To use ECDSA, such protocol as Bitcoin must fix a set of parameters for the elliptic curve and its finite field, so that all users of the protocol know and apply these parameters. Otherwise, everyone will solve their own equations, which will not converge with each other, and they will never agree on anything.
For all these parameters, Bitcoin uses very, very large (well, awesomely incredibly huge) numbers. It is important. In fact, all practical applications of ECDSA use huge numbers. After all, the security of this algorithm relies on the fact that these values are too large to pick up a key with a simple brute force. The 384-bit ECDSA key is considered safe enough for the NSA's most secretive government service (USA).

Replacement of ECDSA

Thanks to the hard work done by Peter Wuille (a famous cryptography specialist) and his colleagues on an improved elliptical curve called secp256k1, Bitcoin's ECDSA has become even faster and more efficient. However, ECDSA still has some shortcomings, which can serve as a sufficient basis for its complete replacement. After several years of research and experimentation, a new signature scheme was established to increase the confidentiality and efficiency of Bitcoin transactions: Schnorr's digital signature scheme.
Schnorr's signature takes the process of using “keys” to a new level. It takes only 64 bytes when it gets into the block, which reduces the space occupied by transactions by 4%. Since transactions with the Schnorr signature are the same size, this makes it possible to pre-calculate the total size of the part of the block that contains such signatures. A preliminary calculation of the block size is the key to its safe increase in the future.
Keep up with the news of the crypto world at CoinJoy.io Follow us on Twitter and Medium. Subscribe to our YouTube channel. Join our Telegram channel. For any inquiries mail us at [[email protected]](mailto:[email protected]).
submitted by CoinjoyAssistant to btc [link] [comments]

ECDSA In Bitcoin

Digital signatures are considered the foundation of online sovereignty. The advent of public-key cryptography in 1976 paved the way for the creation of a global communications tool – the Internet, and a completely new form of money – Bitcoin. Although the fundamental properties of public-key cryptography have not changed much since then, dozens of different open-source digital signature schemes are now available to cryptographers.

How ECDSA was incorporated into Bitcoin

When Satoshi Nakamoto, a mystical founder of the first crypto, started working on Bitcoin, one of the key points was to select the signature schemes for an open and public financial system. The requirements were clear. An algorithm should have been widely used, understandable, safe enough, easy, and, what is more important, open-sourced.
Of all the options available at that time, he chose the one that met these criteria: Elliptic Curve Digital Signature Algorithm, or ECDSA.
At that time, native support for ECDSA was provided in OpenSSL, an open set of encryption tools developed by experienced cipher banks in order to increase the confidentiality of online communications. Compared to other popular schemes, ECDSA had such advantages as:
These are extremely useful features for digital money. At the same time, it provides a proportional level of security: for example, a 256-bit ECDSA key has the same level of security as a 3072-bit RSA key (Rivest, Shamir и Adleman) with a significantly smaller key size.

Basic principles of ECDSA

ECDSA is a process that uses elliptic curves and finite fields to “sign” data in such a way that third parties can easily verify the authenticity of the signature, but the signer himself reserves the exclusive opportunity to create signatures. In the case of Bitcoin, the “data” that is signed is a transaction that transfers ownership of bitcoins.
ECDSA has two separate procedures for signing and verifying. Each procedure is an algorithm consisting of several arithmetic operations. The signature algorithm uses the private key, and the verification algorithm uses only the public key.
To use ECDSA, such protocol as Bitcoin must fix a set of parameters for the elliptic curve and its finite field, so that all users of the protocol know and apply these parameters. Otherwise, everyone will solve their own equations, which will not converge with each other, and they will never agree on anything.
For all these parameters, Bitcoin uses very, very large (well, awesomely incredibly huge) numbers. It is important. In fact, all practical applications of ECDSA use huge numbers. After all, the security of this algorithm relies on the fact that these values are too large to pick up a key with a simple brute force. The 384-bit ECDSA key is considered safe enough for the NSA's most secretive government service (USA).

Replacement of ECDSA

Thanks to the hard work done by Peter Wuille (a famous cryptography specialist) and his colleagues on an improved elliptical curve called secp256k1, Bitcoin's ECDSA has become even faster and more efficient. However, ECDSA still has some shortcomings, which can serve as a sufficient basis for its complete replacement. After several years of research and experimentation, a new signature scheme was established to increase the confidentiality and efficiency of Bitcoin transactions: Schnorr's digital signature scheme.
Schnorr's signature takes the process of using “keys” to a new level. It takes only 64 bytes when it gets into the block, which reduces the space occupied by transactions by 4%. Since transactions with the Schnorr signature are the same size, this makes it possible to pre-calculate the total size of the part of the block that contains such signatures. A preliminary calculation of the block size is the key to its safe increase in the future.
Keep up with the news of the crypto world at CoinJoy.io Follow us on Twitter and Medium. Subscribe to our YouTube channel. Join our Telegram channel. For any inquiries mail us at [[email protected]](mailto:[email protected]).
submitted by CoinjoyAssistant to Bitcoin [link] [comments]

Satoshi Nakamoto built in defenses against quantum computing attacks - If you use one Bitcoin address one time, then your ECDSA public key is only ever revealed at the one time that you spend bitcoins sent to each address. A quantum computer would need to be to break your key in that short time.

submitted by crazyeyes420 to Bitcoin [link] [comments]

[Tenant - NY] Qualifying for rent based on Bitcoin assets

I was an early adopter of Bitcoin and my small initial investment has luckily appreciated to the point where I no longer need to work. I'm trying to move to a high-end rental property owned by a mom & pop landlord with a few properties around town.
Of course because of the price tag, especially during the current environment, they're very strict about making sure potential tenants are able to afford the rent. No problem there. My crypto holdings could easily cover the lease for several decades. Normally I suppose it's quite rare for rental tenants to have large asset holdings. So, already this is kind of an unusual situation, as they're more geared for verifying income.
But the good news is they do have a procedure for qualifying tenants based on assets. I'm not sure if they've used it before... But anyway it requires that tenants have 40 times the monthly rent in liquid assets. No problem, I've got *way* more than that. They say all they require is seeing three months of financial statements.
Uhh... The whole point of Bitcoin is that it isn't centralized inside a financial institution. I tried to explain, over the phone to the nice older lady landlord, how the blockchain works, and the basics of public-private encryption. I explained how it's actually very easy to prove ownership of my Bitcoin holdings. All I have to do is give her the address of my holdings, and prove ownership by signing a message with the corresponding ECDSA private keys. At that point all she has to do is check the latest mined block to verify that it contains enough BTC to satisfy her requirements.
I don't see what the problem is here. Unlike sending copies of bank statements, which could easily be forged, this method is *far* more reliable and is literally cryptographically secure. She's acting like I'm some sort of lunatic, when she implicitly trusts the same crypto algorithms 100 times a day in her online banking, shopping and messages.
Anyway, has anyone else been in this position? Either from the tenant or landlord side? I understand cryptocurrency is new technology, but by now surely people must realize Bitcoin isn't some made up fairy dust. I could just move on to a different property, but feel like I'd end up hitting the same wall. Any suggestions for proving to landlords that I'm quite far from a financial risk?
submitted by throwawayTenant2021 to Landlord [link] [comments]

Bitcoin’s Security and Hash Rate Explained

Bitcoin’s Security and Hash Rate Explained
As the Bitcoin hash rate reaches new all-time highs, there’s never been a better time to discuss blockchain security and its relation to the hashing power and the Proof of Work (PoW) that feed the network. The Bitcoin system is based on a form of decentralized trust, heavily relying on cryptography. This makes its blockchain highly secure and able to be used for financial transactions and other operations requiring a trustless ledger.
Far from popular belief, cryptography dates back to thousands of years ago. The same root of the word encryption — crypt — comes from the Greek word ‘kryptos’, meaning hidden or secret. Indeed, humans have always wanted to keep some information private. The Assyrians, the Chinese, the Romans, and the Greeks, they all tried over the centuries to conceal some information like trade deals or manufacturing secrets by using symbols or ciphers carved in stone or leather. In 1900 BC, Egyptians used hieroglyphics and experts often refer to them as the first example of cryptography.
Back to our days, Bitcoin uses cryptographic technologies such as:
  1. Cryptographic hash functions (i.e. SHA-256 and RIPEMD-160)
  2. Public Key Cryptography (i.e. ECDSA — the Elliptic Curve Digital Signature Algorithm)
While Public Key Cryptography, bitcoin addresses, and digital signatures are used to provide ownership of bitcoins, the SHA-256 hash function is used to verify data and block integrity and to establish the chronological order of the blockchain. A cryptographic hash function is a mathematical function that verifies the integrity of data by transforming it into a unique unidentifiable code.
Here is a graphic example to make things more clear:

– Extract from the MOOC (Massive Open Online Course) in Digital Currencies at the University of Nicosia.
Furthermore, hash functions are used as part of the PoW algorithm, which is a prominent part of the Bitcoin mining algorithm and this is what is of more interest to understand the security of the network. Mining creates new bitcoins in each block, almost like a central bank printing new money and creates trust by ensuring that transactions are confirmed only when enough computational power is devoted to the block that contains them. More blocks mean more computation, which means more trust.
With PoW, miners compete against each other to complete transactions on the network and get rewarded. Basically they need to solve a complicated mathematical puzzle and a possibility to easily prove the solution. The more hashing power, the higher the chance to resolve the puzzle and therefore perform the proof of work. In more simple words, bitcoins exist thanks to a peer to peer network that helps validate transactions in the ledger and provides enough trust to avoid that a third party is involved in the process. It also exists because miners give it life by resolving that computational puzzle, through the mining reward incentive they are receiving.
For more info, contact Block.co directly or email at [email protected].
Tel +357 70007828
Get the latest from Block.co, like and follow us on social media:
✔️Facebook
✔️LinkedIn
✔️Twitter
✔️YouTube
✔️Medium
✔️Instagram
✔️Telegram
✔️Reddit
✔️GitHub
submitted by BlockDotCo to u/BlockDotCo [link] [comments]

Words from the founders of ABCardO

The family of public-key cryptosystems, a fundamental breakthrough in modern cryptography in the late 1970s, has increasingly become a part of our communication networks over the last three decades. The Internet and other communication systems rely principally on the Diffie-Hellman key exchange, RSA encryption, and digital signatures using DSA, ECDSA, or related algorithms. The security of these cryptosystems depends on the difficulty of number theory problems such as Integer Factorization and the Discrete Log Problem. In 1994, Peter Shor showed that quantum computers could solve each of these problems in polynomial time, thus rendering the security of all cryptosystems based on such assumptions impotent. In the academic world, this new science bears the moniker Post-Quantum Cryptography (PQC).
In August 2015, the National Security Agency (NSA) published an online announcement stating a plans to transition to quantum-resistant algorithms. In December 2016, the National Institute of Standards and Technology (NIST) announced a call for proposals of quantum resistant algorithms with a deadline of November 30th 2017.
In light of the threat that quantum computers pose to cryptosystems such as RSA and ECC, the once-distant need to develop and deploy quantum-resistant technologies is quickly becoming a reality. Cryptocurrencies like Bitcoin are new financial instruments which are created to make financial transactions more efficient, cheaper, and decentralized. Their fundamental building blocks are cryptographic algorithms such as ECC digital signatures which are used to perform various functions to ensure the integrity and security of the whole system. However, the use of ECC signatures and other similar cryptographic algorithms means that quantum computing could pose a fatal threat to the security of existing cryptocurrencies, which deploy number theory-based public key cryptosystems extensively.
The mission of the ABCMint Foundation is to successfully develop quantum-resistant blockchain technology. We also look to promote and support fundamental research for quantum computing technology and post-quantum algorithms.
submitted by prelude406 to ABCardO_PQC [link] [comments]

NSA wants encryption that fends off quantum computing hacks - implies elliptic curve could eventually be broken

NSA wants encryption that fends off quantum computing hacks - implies elliptic curve could eventually be broken submitted by OzzyBitcions to Bitcoin [link] [comments]

A brief history of the Monero development (Part I)

or a struggle for anonymity and confidentiality of blockchain transaction.
The issues of privacy of electronic currency faced researchers and developers for a long time, long before Bitcoin. In 1991, Tatsuaki Okamoto and Kazuo Ohta from the NTT research laboratory (Japan's largest telecommunications company) introduced 6 criteria for an ideal e-currency, including privacy: "relationship between the user and his purchases must be untraceable by anyone". Nicholas van Saberhagen, an anonymous author behind the work on the CryptoNote protocol, which formed the basis of Monero, in December 2012 summarized these 6 criteria to two specific properties:
Untraceability: for every incoming transaction, all possible senders are equally likely.Unlinkability: for any two outgoing transactions, it is impossible to prove that they were sent to the same person.
None of the other properties are characteristic of Bitcoin, since all transactions are broadcasted publicly. Of course, by the time this work was written, various tumblers made it possible to combine outputs of several transactions and send them through some intermediate address. Also, by that time, some protocols based on the zero-knowledge proof were known, but at that time such evidence was large enough to make them impractical to use.
What was proposed to tackle the issues: firstly, each transaction was signed on behalf of the group, not the individual, as in BTC. To do this, we used the option of an electronic digital signature called "Ring Signature" (further development of the so-called "Group Signature"). However, when implementing a completely anonymous ring signature, a (very high) probability of double spending of coins arose, and therefore the so-called linkable anonymity primitive was taken, which was implemented through a one-time-key mechanism (i.e., when creating each new transaction, the group key changes).
Essentially, although it's certainly worth noting that the CryptoNote implementation used a different scheme of elliptical curves (EdDSA instead of ECDSA, as a result, an elliptic curve with a different equation was used, etc.).
Anonymity achieved, but what about privacy? RingCT to the rescue
You know how it happens: everything seems to be there, but something is missing. The problem with the original CryptoNote protocol was that the user balances were not hidden, and thus, it was possible to analyze the blockchain and deanonymize the members of the group who signed the transaction. An additional problem with hiding balances is that with simple encryption of balances, it is not possible to reach a consensus on whether coins were produced from the thin air or not.
To solve this problem, the developer Shen Noether from Monero Research Lab proposed the use of the Pederson Commitment, which allows the prover to calculate the obligation for the amount without disclosing it and being unable to change it.
Short explanation from Monero Wiki:
As long as the encrypted output amounts created, which include an output for the recipient and a change output back to the sender, and the unencrypted transaction fee is equal to the sum of the inputs that are being spent, it is a legitimate transaction and can be confirmed to not be creating Monero out of thin air.
Thus, it is possible to obtain a ring confidential transaction (hence the name). And, the inquisitive reader will ask, what is wrong this time?
The problem is one, but twofold. On the one hand, the size of the transaction increases with RingCT, which does not have the best effect on scalability and transaction fees. Besides, again, due to the large size of the signature, the number of possible subscribers n is limited. So, the n value in the official software of Monero wallet is from 5 to 20 by default. As a result, the sender anonymity for RingCT1.0 is at most 1 out of 20.
To be continued...
submitted by CUTcoin to cutc0in [link] [comments]

Technical: Upcoming Improvements to Lightning Network

Price? Who gives a shit about price when Lightning Network development is a lot more interesting?????
One thing about LN is that because there's no need for consensus before implementing things, figuring out the status of things is quite a bit more difficult than on Bitcoin. In one hand it lets larger groups of people work on improving LN faster without having to coordinate so much. On the other hand it leads to some fragmentation of the LN space, with compatibility problems occasionally coming up.
The below is just a smattering sample of LN stuff I personally find interesting. There's a bunch of other stuff, like splice and dual-funding, that I won't cover --- post is long enough as-is, and besides, some of the below aren't as well-known.
Anyway.....

"eltoo" Decker-Russell-Osuntokun

Yeah the exciting new Lightning Network channel update protocol!

Advantages

Myths

Disadvantages

Multipart payments / AMP

Splitting up large payments into smaller parts!

Details

Advantages

Disadvantages

Payment points / scalars

Using the magic of elliptic curve homomorphism for fun and Lightning Network profits!
Basically, currently on Lightning an invoice has a payment hash, and the receiver reveals a payment preimage which, when inputted to SHA256, returns the given payment hash.
Instead of using payment hashes and preimages, just replace them with payment points and scalars. An invoice will now contain a payment point, and the receiver reveals a payment scalar (private key) which, when multiplied with the standard generator point G on secp256k1, returns the given payment point.
This is basically Scriptless Script usage on Lightning, instead of HTLCs we have Scriptless Script Pointlocked Timelocked Contracts (PTLCs).

Advantages

Disadvantages

Pay-for-data

Ensuring that payers cannot access data or other digital goods without proof of having paid the provider.
In a nutshell: the payment preimage used as a proof-of-payment is the decryption key of the data. The provider gives the encrypted data, and issues an invoice. The buyer of the data then has to pay over Lightning in order to learn the decryption key, with the decryption key being the payment preimage.

Advantages

Disadvantages

Stuckless payments

No more payments getting stuck somewhere in the Lightning network without knowing whether the payee will ever get paid!
(that's actually a bit overmuch claim, payments still can get stuck, but what "stuckless" really enables is that we can now safely run another parallel payment attempt until any one of the payment attempts get through).
Basically, by using the ability to add points together, the payer can enforce that the payee can only claim the funds if it knows two pieces of information:
  1. The payment scalar corresponding to the payment point in the invoice signed by the payee.
  2. An "acknowledgment" scalar provided by the payer to the payee via another communication path.
This allows the payer to make multiple payment attempts in parallel, unlike the current situation where we must wait for an attempt to fail before trying another route. The payer only needs to ensure it generates different acknowledgment scalars for each payment attempt.
Then, if at least one of the payment attempts reaches the payee, the payee can then acquire the acknowledgment scalar from the payer. Then the payee can acquire the payment. If the payee attempts to acquire multiple acknowledgment scalars for the same payment, the payer just gives out one and then tells the payee "LOL don't try to scam me", so the payee can only acquire a single acknowledgment scalar, meaning it can only claim a payment once; it can't claim multiple parallel payments.

Advantages

Disadvantages

Non-custodial escrow over Lightning

The "acknowledgment" scalar used in stuckless can be reused here.
The acknowledgment scalar is derived as an ECDH shared secret between the payer and the escrow service. On arrival of payment to the payee, the payee queries the escrow to determine if the acknowledgment point is from a scalar that the escrow can derive using ECDH with the payer, plus a hash of the contract terms of the trade (for example, to transfer some goods in exchange for Lightning payment). Once the payee gets confirmation from the escrow that the acknowledgment scalar is known by the escrow, the payee performs the trade, then asks the payer to provide the acknowledgment scalar once the trade completes.
If the payer refuses to give the acknowledgment scalar even though the payee has given over the goods to be traded, then the payee contacts the escrow again, reveals the contract terms text, and requests to be paid. If the escrow finds in favor of the payee (i.e. it determines the goods have arrived at the payer as per the contract text) then it gives the acknowledgment scalar to the payee.

Advantages

Disadvantages

Payment decorrelation

Because elliptic curve points can be added (unlike hashes), for every forwarding node, we an add a "blinding" point / scalar. This prevents multiple forwarding nodes from discovering that they have been on the same payment route. This is unlike the current payment hash + preimage, where the same hash is used along the route.
In fact, the acknowledgment scalar we use in stuckless and escrow can simply be the sum of each blinding scalar used at each forwarding node.

Advantages

Disadvantages

submitted by almkglor to Bitcoin [link] [comments]

$300 Gadget Claims to Steal Encryption Keys out of the Air; Nearly Unstoppable... implications for Bitcoin?

$300 Gadget Claims to Steal Encryption Keys out of the Air; Nearly Unstoppable... implications for Bitcoin? submitted by bitvinda to Bitcoin [link] [comments]

Bottos 2020 Research and Development Scheme

Bottos 2020 Research and Development Scheme

https://preview.redd.it/umh8ivbsua841.png?width=554&format=png&auto=webp&s=5c16d9d9e61503e4c9d44212eecd176eda11550a
As 2020 is now here, Bottos has solemnly released its “2020 Research and development scheme”. On one hand, we adhere to the principle of transparency so that the whole community can comprehend our next step as a whole, but more importantly, it also helps our whole team to think deeply about the future and reach consensus. It is strongly believed that following these consistent follow-ups will help us to in order to achieve the best results.
Based on the efficient development of Bottos, the team’s technical achievements in consensus algorithms and smart contracts are used to deeply implement and optimize the existing technical architecture. At the same time using the community’s technical capabilities, horizontal development, expanding new functional modules and technical directions it stays closely integrated with the whole community.
In the future, we will keep on striving to achieve in-depth thinking, comprehensive planning, and flexible adjustment.


Overview of Technical Routes

https://preview.redd.it/rk9tpg2uua841.png?width=554&format=png&auto=webp&s=77e607b81f31c0d20feaa90eca81f09a23addca4
User feedback within the community is the driving force behind Bottos progress. In the development route of the community and industry we have formulated a roadmap for technical development, pointing out the right path for the team towards the right direction among the massive routes of modern technology.
As part of our 2020 research and development objective we have the following arrangements:
1. Intensifying enormous number of smart contracts and related infrastructures
After many years of development, smart contracts have gradually become the core and standard function in blockchain projects. The strength of smart contracts, ease of use, and stability represent the key capabilities of a blockchain project. As a good start, Bottos has already made great progress in the field of smart contracts. In smart contracts we still need to increase development efforts, making the ease of use and stability of smart contracts the top priority of our future development.
Reducing the barriers for developers and ordinary users to use, shortening the contract development cycle and saving users time is another important task for the team to accomplish. To this end, we have planned an efficient and easy-to-use one-stop contract development, debugging, and deployment tool that will provide multiple access methods and interfaces to the test network to support rapid deployment and rapid debugging.
2. Establishing an excellent client and user portal
The main goal here is to add an entrance point to the creation and deployment of smart contracts in the wallet client. To this end, the wallet needs to be transformed, a local compiler for smart contracts must be added, and an easy-to-use UI interface can be provided for the purpose of creating, deploying, and managing contracts to meet the needs of users with a single mouse click only.
3. Expanding distributed storage
Distributed storage is another focus of our development in the upcoming year. Only by using a distributed architecture can completely solve the issue of performance and scalability of stand-alone storage. Distributed storage suitable for blockchain needs to provide no less than single machine performance, extremely high availability, no single point of failure, easy expansion, and strong consistent transactions. These are the main key points and difficulties of Bottos in field of distributed storage in the upcoming days.
4. Reinforcing multi party secured computing
Privacy in computing is also a very important branch to deal with. In this research direction, Bottos has invested a lot of time and produced many research results on multi-party secured computing, such as technical articles and test cases. In the future, we will continue to give efforts in the direction of multi-party secured computing and apply mature technology achievements into the functions of the chain.

2020 Bottos — Product Development

Support for smart contract deployment in wallets
The built-in smart contract compiler inside the wallet supports compilation of the smart contracts in all languages provided by Bottos and integrates with the functions in the wallet. It also supports one-click deployment of the compiled contract source code in the wallet.
When compiling a contract, one can choose whether to pre-execute the contract code. If pre-execution is selected, it will connect to the remote contract pre-execution service and return the execution result to the wallet.
When deploying a contract, one can choose to deploy to the test network or main network and the corresponding account and private key of the test network or main network should be provided.

2020 Bottos-Technical Research

https://preview.redd.it/x2k65j7xua841.png?width=553&format=png&auto=webp&s=a40eae3c56b664c031b3db96f608923e670ff331
1. Intelligent smart contract development platform (BISDP)
The smart contract development platform BISDP is mainly composed of user-oriented interfaces, as well as back-end compilation and deployment tools, debugging tools, and pre-execution frameworks.
The user-oriented interface provides access methods based on WEB, PC, and mobile apps, allowing developers to quickly and easily compile and deploy contracts and provide contract template management functions. It can also manage the contract remotely by viewing the contract execution status, the consumed resources and other information.
In the compilation and deployment tool a set of smart contract source code editing, running, debugging, and deployment solutions as well as smart contract templates for common tasks are provided, which greatly reduces the threshold for developers to learn and use smart contracts. At the same time, developers and ordinary users are provided with a smart contract pre-execution framework, which can check the logical defects and security risks in smart contracts before actual deployment and promptly remind users a series of problems even before the smart contracts are actually run.
In the debugging tool, there are built-in local debugging and remote debugging tools. Multiple breakpoints can be set in the debugging tool. When the code reaches the breakpoint, one can view the variables and their contents in the current execution stack. One can also make conditional breakpoints based on the value of the variable. The code will not execute until the value reaches a preset value in memory.
In the pre-execution framework, developers can choose to pre-execute contract code in a virtual environment or a test net, checking out problems in some code that cannot be detected during compilation time and perform deeper code inspection. The pre-execution framework can also prompt the user in advance about the time and space resources required for execution.
2. Supporting Python and PHP in BVM virtual machine for writing smart contracts
We have added smart contract writing tools based on Python and PHP languages. These languages can be compiled into the corresponding BVM instruction set for implementation. These two reasons are used as the programming language for smart contracts.
For the Python language, the basic language elements supported by the first phase are:
- Logic control: If, Else, Eli, While, Break, method calls, for x in y
- Arithmetic and relational operators: ADD, SUB, MUL, DIV, ABS, LSHIFT, RSHIFT, AND, OR, XOR, MODULE, INVERT, GT, GTE, LT, LTE, EQ, NOTEQ
-
Data structure:
- Supports creation, addition, deletion, replacement, and calculation of length of list data structure
- Supports creation, append, delete, replace, and calculation of length of dict data structure
Function: Supports function definition and function calls
For the PHP language, the basic language elements supported by the first phase are :
- Logic control: If, Else, Eli, While, Break, method calls
- Arithmetic and relational operators: ADD, SUB, MUL, DIV, ABS, LSHIFT, RSHIFT, AND, OR, XOR, MODULE, INVERT, GT, GTE, LT, LTE, EQ, NOTEQ
Data structure:
- Support for creating, appending, deleting, replacing, and calculating length of associative arrays
Function: Supports the definition and calling of functions
For these two above mentioned languages, the syntax highlighting and code hinting functions are also provided in BISDP, which is very convenient for developers to debug any errors.
3. Continuous exploration of distributed storage solutions
Distributed storage in blockchain technology actually refers to a distributed database. Compared with the traditional DMBS, in addition to the ACID characteristics of the traditional DBMS, the distributed database also provides the high availability and horizontal expansion of the distributed system. The CAP principle of distributed system reveals that for a common distributed system there is an impossible triangle, only two of them can be selected among its three directions, consistency, availability, and partition fault tolerance. Distributed databases in China must require strong consistency. This is due to the characteristics of the blockchain system itself, because it needs to provide reliable distributed transaction capabilities. For these technical issues, before ensuring that the distributed storage solution reaches 100% availability, we will continue to invest more time and technical strength, do more functional and performance testing, and conduct targeted tests for distributed storage systems.
4. Boosting secured multi-party computing research and development
Secured multi-party Computing (MPC) is a cryptographic mechanism that enables multiple entities to share data while protecting the confidentiality of the data without exposing the secret encryption key. Its performance indicators, such as security and reliability are important for the realization of the blockchain. The transparent sharing of the data privacy on the distributed ledger and the privacy protection of the client wallet’s private key are truly essential.
At present, the research and development status of the platform provided by Bottos in terms of privacy-enhanced secured multi-party computing is based on the BIP32 / 44 standard in Bitcoin wallets to implement distributed management of client wallet keys and privacy protection.
Considering the higher level of data security and the distributed blockchain account as the public data of each node, further research and development are being planned on:
(1) Based on RSA, Pailliar, ECDSA and other public key cryptosystems with homomorphic attributes, as well as the GC protocol, OT protocol, and ZKP protocol to generate and verify transaction signatures between two parties;
(2) Introduce the international mainstream public key system with higher security and performance, national secret public key encryption system, and fewer or non-interactive ZKP protocols to achieve secured multi-party computing with more than two parties, allowing more nodes to participate Privacy protection of ledger data.

Summary

After years of exploration, we are now full of confidence in our current research and development direction. We are totally determined to move forward by continuous hard work. In the end, all members of Bottos also want to thank all the friends in the community for their continuous support and outstanding contributions. Your certainty is our greatest comfort and strongest motivation.

Be smart. Be data-driven. Be Bottos.
If you aren’t already in our group, please join now! https://t.me/bottosofficial
Join Our Community and Stay Updated!
Bottos Website | Twitter |Facebook | Telegram | Reddit
submitted by BOTTOS_AI to Bottos [link] [comments]

Tachyon Protocol Technical Guide #2 Tachyon Security Protocol

In our last article, we explored the fundamentals of TBU (or Tachyon Booster UDP). TBU is the core of Tachyon’s architecture which will replace the Application, Transport and Internet layers of the conventional TCP/IP protocol.
What Is TBU? How Does TBU Work?
The core of Tachyon Protocol includes four parts — TBU(Tachyon Booster UDP), TSP(Tachyon Security Protocol)…
medium.com
Today we will take a look at TSP, or Tachyon Security Protocol. As the name suggests, TSP is that part of Tachyon which ensures that the ecosystem remains safe from hackers and user data remains hidden from the outside world. The two main weapons in TSP’s arsenal are Asymmetric end-to-end Encryption and Protocol Simulation Scheme.
ECDHE-ECDSA Asymmetric end-to-end Encryption
The data that you send over the Internet passes through a host of servers, routers, and devices. There’s simply no way of knowing how secure any of these data gateways are. For all you know, your data might be intercepted by hackers at multiple points.
The most reliable safeguard against this problem is end-to-end encryption, which scrambles user data such that only the recipient can make any sense out of it. Even if a hacker intercepts this data, it would seem all gibberish. It’s only when the data reaches its correct destination that it is unscrambled and the original message is revealed.
Let’s say at a birthday party, Jim wants to send a secret message to his friend Rob; but the party is teeming with other kids, and he can’t risk the secret being let out. Luckily for Jim, both he and Rob have been taking French classes outside their school hours. Jim jots down the message in French on a piece of paper, and asks the other kids to relay it over to Rob. Now even if any of his friends open the chit, he won’t be able to make any meaning out of it. Smart move, Jim!
Ordinary point-to-point networking suffers from 2 major threats:
1.Network Sniffing

Hackers can use Network Sniffing tools to intercept and analyze the data flowing over computer network links. Most of these Sniffers work mainly with TCP/IP packets, but more sophisticated tools can work lower in the network hierarchy and even intercept Ethernet frames.
To counter such data hacking techniques, TSP creates encryption keys in insecure channels (where data points are unfamiliar with the credentials of each other) by implementing ECDH — ECDSA and Ephemeral Key. ECDH — ECDSA are a class of cryptographic algorithms which come under what is known as Elliptic Curve Cryptography.
TSP also uses AES (Advanced Encryption Standard) to ensure that even if the message is intercepted, the attacker wouldn’t be able to read it. In addition to this, a set of hash algorithms, such as HMAC, SHA2 and Keccak, are deployed so that in case the attacker is able to alter the data, the message would be automatically ignored.
In some instances, although the attacker is unable to decode the message, he might still be able to acquire some statistical feature information from it. TSP safeguards against this through a combination of different techniques, such as using a public symmetric encryption key, adding random data to the transmitted message, and encrypting the information part (such as the frame byte of the data packet).
Moreover, the likelihood of an encryption key being deciphered increases with multiple usages. TSP avoids any such risks by automatically renegotiating the encryption key after the connection transmits a certain length of data.
  1. Man-in-the-middle Attack (MITM)
In MITM, the attacker actually pretends to be one of the communicating parties and intercepts the communication. In 2018, well known hardware wallet manufacturer Ledger became the victim of MITM attacks. A piece of malware that made its way into the user’s computer would simply modify the “Bitcoin receive address” as displayed on the Ledger Wallet app. The satoshis that were supposed to make their way to the user’s wallet ended up being directed to the attacker’s public address instead.
TSP protects against MITM attacks by using ECDH (or Elliptic-Curve Diffie–Hellman), a key agreement protocol that allows two parties to establish a shared secret communication over an insecure channel. This makes it possible for the identities of both parties to be verified before any data is transmitted. Through ECDH, each of these parties generates an elliptic-curve public-private key pair. As long as this private key is not exposed, MITM attacks can be prevented.
Protocol Simulation Scheme
A distinct feature of TSP is the Protocol Simulation Scheme, which allows Tachyon to simulate well known communication protocols, such as UDP, TCP, HTTP, HTTPS, FTP and SMTP. So while Tachyon encrypts data packets using its own TBU protocol stack (discussed in our last article), anyone who intercepts this data would assume that the data belongs to the communication protocol being simulated.
Though Protocol Simulation, TSP guarantees that the real content of the communication is concealed, in order to avoid information unwarranted interception and exposure. It also fools firewalls and other third party applications into letting Tachyon data flow unhindered — a feature that is really useful in Tachyon’s VPN application.
Today, HTTP/HTTPS is the most commonly used communication protocol in the World Wide Web. However, in most cases, the data that is transmitted is completely unencrypted, which makes it vulnerable to hacking. Moreover, HTTP-based communication checks neither the identity of the node with which communicating is being established, nor the integrity of the message being transmitted.
In case of Tachyon, not only is the data encrypted in multiple levels, but the nature of the data packet is concealed as well. For example, in case of SMTP simulation, the data will resemble an ordinary e-mail; while in case of HTTPS simulation, the data traffic will appear like the user is visiting a website such as Google or BBC News.
submitted by Rlindras to Crypto_General [link] [comments]

Part 6. (Last part) I'm writing a series about blockchain tech and possible future security risks. Failing shortcuts in an attempt to accomplish Quantum Resistance

The previous parts will give you usefull basic blockchain knowledge and insights on quantum resistance vs blockchain that are not explained in this part.
Part 1, what makes blockchain reliable?
Part 2, The mathematical concepts Hashing and Public key cryptography.
Part 3, Quantum resistant blockchain vs Quantum computing.
Part 4A, The advantages of quantum resistance from genesis block, A
Part 4B, The advantages of quantum resistance from genesis block, A
Part 5, Why BTC is vulnerable for quantum attacks sooner than you would think.

Failing shortcuts in an attempt to accomplish Quantum Resistance
Content:
Hashing public keys
“Instant” transactions
FIFO
Standardized fees
Multicast
Timestamped transactions
Change my mind: If a project doesn't use a Quantum Resistant signature scheme, it is not 100% Quantum Resistant.
Here are some of the claims regarding Quantum Resistance without the use of a quantum resistant signature scheme that I have come across so far. For every claim, I give arguments to substantiate why these claims are incorrect.
“We only have public keys in hashed form published. Even quantum computers can't reverse the Hash, so no one can use those public keys to derive the private key. That's why we are quantum resistant.” This is incorrect.
This example has been explained in the previous article. To summarize: Hashed public keys can be used as an address for deposits. Deposits do not need signature authentication. Alternatively, withdrawals do need signature authentication. To authenticate a signature, the public key will always need to be made public in full, original form. As a necessary requirement, the full public key would be needed to spend coins. Therefore the public key will be included in the transaction.
The most famous blockchain to use hashed public keys is Bitcoin. Transactions can be hijacked during the period a user sends a transaction from his or her device to the blockchain and the moment a transaction is confirmed. For example: during Bitcoins 10 minute blockchain, the full public keys can be obtained to find private keys and forge transactions. Page 8, point 3 Hashing public keys does have advantages: they are smaller than the original public keys. So it does save space on the blockchain. It doesn't give you Quantum Resistance however. That is a misconception.
“Besides having only hashed public keys on the blockchain, we also have instant transactions. So there is no time to hijack a transaction and to obtain the public key fast enough to forge a transaction. That's why we are quantum resistant.” This is incorrect and impossible.
There is no such thing as instant transactions. A zero second blocktime for example is a claim that can’t be made. Period. Furthermore, transactions are collected in pools before they are added to a block that is going to be processed. The time it takes for miners to add them to a new block before processing that block depends on the amount of transactions a blockchain needs to process at a certain moment. When a blockchain operates within its maximum capacity (the maximum amount of transactions that a blockchain can process per second), the adding of transactions from the pool will go quite swiftly, but still not instantaneously.
However, when there is high transaction density, transactions can be stuck in the pool for a while. During this period the transactions are published and the full public keys can be obtained. Just as with the previous hijacking example, a transaction can be forged in that period of time. It can be done when the blockchain functions normally, and whenever the maximum capacity is exceeded, the window of opportunity grows for hackers.
Besides the risk that rush hours would bring by extending the time to work with the public key and forge transactions, there are network based attacks that could serve the same purpose: slow the confirmation time and create a bigger window to forge transactions. These types are attacks where the attacker targets the network instead of the sender of the transaction: Performing a DDoS attack or BGP routing attack or NSA Quantum Insert attack on a peer-to-peer network would be hard. But when provided with an opportunity to earn billions, hackers would find a way.
For example: https://bitcoinmagazine.com/articles/researchers-explore-eclipse-attacks-ethereum-blockchain/
For BTC: https://eprint.iacr.org/2015/263.pdf
An eclipse attack is a network-level attack on a blockchain, where an attacker essentially takes control of the peer-to-peer network, obscuring a node’s view of the blockchain.
That is exactly the recipe for what you would need to create extra time to find public keys and derive private keys from them. Then you could sign transactions of your own and confirm them before the originals do.
This specific example seems to be fixed now, but it most definitely shows there is a risk of other variations to be created. Keep in mind, before this variation of attack was known, the common opinion was that it was impossible. With little incentive to create such an attack, it might take a while until another one is developed. But when the possession of full public keys equals the possibility to forge transactions, all of a sudden billions are at stake.
“Besides only using hashed public keys as addresses, we use the First In First Out (FIFO) mechanism. This solves the forged transaction issue, as they will not be confirmed before the original transactions. That's why we are quantum resistant.” This is incorrect.
There is another period where the public key is openly available: the moment where a transaction is sent from the users device to the nodes on the blockchain network. The sent transaction can be delayed or totally blocked from arriving to the blockchain network. While this happens the attacker can obtain the public key. This is a man-in-the-middle (MITM) attack. A MITM is an attack where the attacker secretly relays and possibly alters the communication between two parties who believe they are directly communicating with each other. No transaction is 100% safe from a MITM attack. This type of attack isn’t commonly known amongst average usergroups due to the fact communication is done either encrypted or by the use of private- public key cryptography. Therefore, at this point of time MITM attacks are not an issue, because the information in transactions is useless for hackers. To emphasize the point made: a MITM attack can be done at this point of time to your transactions. But the information obtained by a hacker is useless because he can not break the cryptography. The encryption and private- public key cryptography is safe at this point of time. ECDSA and RSA can not be broken yet. But in the era of quantum computers the problem is clear: an attacker can obtain the public key and create enough time to forge a transaction which will be sent to the blockchain and arrive there first without the network having any way of knowing the transaction is forged. By doing this before the transaction reaches the blockchain, FIFO will be useless. The original transaction will be delayed or blocked from reaching the blockchain. The forged transaction will be admitted to the network first. And First In First Out will actually help the forged transaction to be confirmed before the original.
“Besides having only hashed public keys, we use small standardized fees. Forged transactions will not be able to use higher fees to get prioritized and confirmed before the original transactions, thus when the forged transaction will try to confirm the address is already empty. This is why we are quantum resistant.” This is incorrect.
The same arguments apply as with the FIFO system. The attack can be done before the original transaction reaches the network. Thus the forged transaction will still be handled first no matter the fee hight.
“Besides the above, we use multicast so all nodes receive the transaction at the same time. That's why we are quantum resistant.” This is incorrect.
Multicast is useless against a MITM attack when the attacker is close enough to the source.
“Besides the above, we number all our transactions and authenticate nodes so the user always knows who he's talking to. That's why we are quantum resistant.” This is incorrect.
Besides the fact that you’re working towards a centralized system if only verified people can become nodes. And besides the fact that also verified nodes can go bad and work with hackers. (Which would be useless if quantum resistant signature schemes would be implemented because a node or a hacker would have no use for quantum resistant public keys and signatures.) There are various ways of impersonating either side of a communication channel. IP-spoofing, ARP-spoofing, DSN-spoofing etc. All a hacker needs is time and position. Time can be created in several ways as explained above. All the information in the transaction an original user sends is valid. When a transaction is hijacked and the communication between the user and the rest of the network is blocked, a hacker can copy that information to his own transaction while using a forged signature. The only real effective defense against MITM attacks can be done on router or server-side by a strong encryption between the client and the server (Which in this case would be quantum resistant encryption, but then again you could just as well use a quantum resistant signature scheme.), or you use server authentication but then you would need that to be quantum resistant too. There is no serious protection against MITM attacks when the encryption of the data and the authentication of a server can be broken by quantum computers.
Only quantum resistant signature schemes will secure blockchain to quantum hacks. Every blockchain will need their users to communicate their public key to the blockchain to authenticate signatures and make transactions. There will always be ways to obtain those keys while being communicated and to stretch the period where these keys can be used to forge transactions. Once you have, you can move funds to your own address, a bitcoin mixer, Monero, or some other privacy coin.
Conclusion
There is only one way to currently achieve Quantum Resistance: by making sure the public key can be made public without any risks, as is done now in the pre-quantum period and as Satoshi has designed blockchain. Thus by the use of quantum resistant signature schemes. The rest is all a patchwork of risk mitigation and delaying strategies; they make it slightly harder to obtain a public key and forge a transaction but not impossible.
Addition
And then there is quite often this strategy of postponing quantum resistant signature schemes
“Instead of ECDSA with 256 bit keys we will just use 384 bit keys. And after that 521 bit keys, and then RSA 4096 keys, so we will ride it out for a while. No worries we don’t need to think about quantum resistant signature schemes for a long time.” This is highly inefficient, and creates more problems than it solves.
Besides the fact that this doesn’t make a project quantum resistant, it is nothing but postponing the switch to quantum resistant signatures, it is not a solution. Going from 256 bit keys to 384 bit keys would mean a quantum computer with ~ 3484 qubits instead of ~ 2330 qubits could break the signature scheme. That is not even double and postpones the problem either half a year or one year, depending which estimate you take. (Doubling of qubits every year, or every two years). It does however have the same problems as a real solution and is just as much work. (Changing the code, upgrading the blockchain, finding consensus amongst the nodes, upgrading all supporting systems, hoping the exchanges all go along with the new upgrade and migrate their coins, heaving all users migrate their coins.) And then quite soon after that, they'll have to go at it again. What they will do next? Go for 512 bit curves? Same issues. It's just patchworks and just as much hassle, but then over and over again for every “upgrade” from 384 to 521 etc.
And every upgrade the signatures get bigger, and closer to the quantum resistant signature sizes and thus the advantage you have over blockchains with quantum resistant signature schemes gets smaller. While the quantum resistant blockchains are just steady going and their users aren’t bothered with all the hassle. At the same time the users of the blockchain that is constantly upgrading to a bigger key size, keep on needing to migrate their coins to the new and upgraded addresses to stay safe.
submitted by QRCollector to CryptoTechnology [link] [comments]

Zero day attack - What would happen?

Suppose that a malicious entity with a large amount of resources developed a technique to obtain secret keys to wallets using an unseen exploit in the cryptography that bitcoin is based on (using quantum computers, etc.). Even if they were smart about it, eventually knowledge that an exploit was found would become known to the general community. At this point, we would still have the record of the blockchain and could "fork" it so that the new encryption rules would provide security again, thus preserving bitcoin to fight another day.
Given this scenerio, I have a few questions:
submitted by throckmortonsign to Bitcoin [link] [comments]

Keychain Accelerates Enterprise Blockchain Adoption with Bitcoin Data Security and Identity Layer

FYI
http://www.keychain.io/2019/09/04/1685/
Uses the Bitcoin blockchain as a public key infrastructure to secure off-chain data.
Capabilities:
Features:
Targeted sectors:
submitted by recursivesalt to u/recursivesalt [link] [comments]

Encryption with Bitcoin

You can sign a message with a bitcoin private key which can be verified with a public key/bitcoin address, right?
So if I'm understanding my cryptography correctly, you should be able to encrypt a file with a public key which can only be decrypted with a private key. (Would a bitcoin address work for the public key?). Or is this just something that Bitcoin's cryptography isn't capable of?
If it is possible, has any thought been given to implementing this?
submitted by Richy_T to Bitcoin [link] [comments]

If the NSA created Bitcoins encryption would you consider it compromised?

If the NSA created Bitcoins encryption would you consider it compromised? submitted by undercard to Bitcoin [link] [comments]

Quantum Hashing

Is this possible?
Would it break bitcoin?
submitted by AintNoFortunateSon to Bitcoin [link] [comments]

CtrXL - Exchange Balances live in Google Sheets

What is CtrXL?
A spreadsheet to track the value of your cryptocurrencies on exchanges, cold storage and/or other locations.
CtrXL can securely pull your Balances from your exchange using Read-Only APIs or by Manual entry in the sheet.
Values are calculated to both BTC and Fiat and can be automatically saved, based on a time interval.
The sheet comes with eye candy Dashboard elements that can be easily adjusted to your own preference.

Download (copy) the sheet
Documentation

Use Cases:
You have currencies on multiple Exchanges or multiple accounts on one exchange
You manage cryptocurrency for others and want a single pane of glass
You have cryptos in 'other' locations; like cold storage, offline / hardware wallets or elsewhere (example: Ledger Nano)
You are looking for a sheet that is simple to understand and can be extended and/or customized

Functionality:
Bibox Binance Bit2C Bitfinex Bitpanda BitMex Bitsane Bitstamp Bittrex CEX.IO Coinbase Coinbase Pro GDAX Cryptopia Deribit Gate.IO Gemini Gopax HitBTC Huobi Indodax Kraken Kucoin Liquid Luno OKEx Poloniex - Manual: Cold Storage


Bibox Binance Binance Jersey Bit2C Bitfinex BitMEX Bitpanda Bitsane Bitstamp Bittrex CEX IO Coinbase + Pro Cryptopia Deribit Gate.IO Gemini HitBTC Huobi Kraken Kucoin OKEx Poloniex - Manual: Cold Storage Gdax API APIS SHA authentication script gas Google Apps Script json balance balances excel sheet google sheet google sheets live cryptosheet cryptosheets crytpo sheet bitcoin ethereum sha256 sha512 private request public request javascript code exchange exchanges REST error json get put cointrexer moosy research spreadsheet spreadsheets code inject pull gate io cex io cexio template data prices import coinmarketcap cmc totals balance balances cryptos cryptocurrency currencies cryptotracking crytotracker Pull Bitcoin and Cryptocurrencies Price and Data in Google Sheets BTC ETH LTC Bitcoin Ethereum Litecoin google script template exchange balance balance api apis spreadsheet excel sheet sheets encryption panda bitpanda global exchange Bibox Binance Bit2C Bitfinex BitMEX Bitpanda Bitsane Bitstamp Bittrex CEX IO Coinbase + Pro Cryptopia Deribit Gate IO GateIO Gemini Gopax HitBTC Huobi Indodax Kraken Kucoin Liquid LUNO OKEx Poloniex and or Manual / Cold storage deribit sha256 sha512 ECDSA signature google script gas google apps script javascript JWT JSON Web Token private exchange balanace request
submitted by moosylog to Cointrexer [link] [comments]

Intro to Digital Signatures  ECDSA Explained Bitcoin Basics: Private and Public Keys plus Encryption Hack Bitcoin Wallet 2019/2020 (CryptoKeys) Cracking Wallets [Fast Download] Public key cryptography - Diffie-Hellman Key Exchange (full version) Introduction to Bitcoin with Yours Bitcoin, Lecture 5: ECDSA

Public key encryption is a type of encryption whereby a pair of keys, one private and one public, are used to perform data encryption and decryption. The public key can be published to third parties, and the private key is kept secret by the owner. The main uses of public key encryption include digital encryption and signatures. For Bitcoin The signature algorithm uses the private key, and the verification algorithm uses only the public key. To use ECDSA, such protocol as Bitcoin must fix a set of parameters for the elliptic curve The more basic article on Bitcoin Addresses may be more appropriate. A Bitcoin address is a 160-bit hash of the public portion of a public/private ECDSA keypair. Using public-key cryptography , you can "sign" data with your private key and anyone who knows your public key can verify that the signature is valid. ECDSA is the algorithm that underpins the signature scheme in Bitcoin, and it is based on elliptic curve cryptography. This is the same cryptographic approach that is used in producing private and public key pairs. In Bitcoin, a digital signature is effectively intended to serve three distinct purposes: Elliptic Curve Digital Signature Algorithm or ECDSA is a cryptographic algorithm used by Bitcoin to ensure that funds can only be spent by their rightful owners.. A few concepts related to ECDSA: private key: A secret number, known only to the person that generated it.A private key is essentially a randomly generated number.

[index] [27382] [31162] [4697] [15108] [16801] [4134] [14031] [29385] [4753] [332]

Intro to Digital Signatures ECDSA Explained

In 5 minutes watch how a public and private key pair are created. This helps you understand the way Bitcoin software wallets work. Created as part of the Best Bitcoin Wallet Australia article at ... We are going to recover a ECDSA private key from bad signatures. ... Recover RSA private key from public keys - rhme2 Key ... Math Behind Bitcoin and Elliptic Curve Cryptography (Explained Simply ... Elliptic Curve Digital Signature Algorithm ECDSA Part 10 Cryptography Crashcourse - Duration: 35:32. Dr. Julian Hosp - Bitcoin, Aktien, Gold und Co. 5,803 views Getting the ECDSA Z Value from a Bitcoin Single Input Transaction - Duration: ... 6:43. Public key cryptography - Diffie-Hellman Key Exchange (full version) - Duration: 8:38. Art of the Problem ... Julian Hosp - Bitcoin, Aktien, Gold und Co. 5,584 ... Computerphile 394,718 views. 8:40. Public Key Cryptography: RSA Encryption Algorithm ... Elliptic Curve Digital Signature Algorithm ECDSA ...

Flag Counter